Смекни!
smekni.com

Случаен ли исход бросания монеты? (стр. 2 из 5)

Если бы можно было подобным образом визуализировать совокупность хаотических траекторий Хенона–Хейлеса, то они выглядели бы, как тарелка макарон, перепутанных самым невероятным образом. После всего сказанного нельзя не отметить, что хаос, который впервые наблюдали Хенон и Хейлес, как теперь известно, — обычное явление в гамильтоновой динамике и в других задачах.

ХАОТИЧЕСКИЕ ТРАЕКТОРИИ

Выражение «хаотическая траектория» означало до сих пор лишь немногим больше, чем то, что траектория не лежит на гладкой инвариантной интегральной поверхности, размерность которой меньше размерности энергетической поверхности. Но каков точный смысл того, что такая траектория более случайна или менее детерминированна, чем траектория, лежащая на гладкой инвариантной поверхности меньшей размерности? Нелинейная динамика даёт на этот вопрос целую иерархию ответов [3, 4]; мы обсудим лишь один из них, имеющий непосредственное отношение к нашей основной теме. Представим себе, что заданная энергетическая поверхность динамической системы разделена на конечное множество неперекрывающихся пронумерованных ячеек так, будто мы пытались придать поверхности сходство с колесом рулетки. Предположим, что кто-то точно знающий траекторию системы называет нам через каждую секунду номер ячейки, в которой в данный момент оказывается состояние системы (как если бы кто-нибудь раз в секунду называл номер того сектора вращающегося колеса рулетки, который в данный момент оказался под шариком-указателем). Рассматривая траектории нехаотической системы, например простого гармонического осциллятора или системы Хенона–Хейлеса при малой энергии, мы обнаружим, что номера образуют регулярную последовательность. Правильную прогрессию мы получим даже в том случае, если период осциллятора равен нецелому числу секунд — необходимо лишь накопить данные за несколько периодов. Рассматривая же хаотические траектории, например траектории системы Хенона–Хейлеса при большей энергии или траектории частиц сигаретного дыма за порогом перехода к турбулентности, мы никогда не заметим регулярности. С таким же успехом мы могли бы наблюдать за номерами вращающегося колеса рулетки. Следовательно, в случае хаотической орбиты мы можем, самое большее, указать вероятности переходов от одного номера ячейки к другим, но не можем предсказать сами переходы.

Итак, назовём орбиту хаотической, если, зная номера ячеек, в которых система находилась в прошлом, т.е. все номера ячеек, выпавшие до текущего значения t, невозможно определить номер ячейки при t+1 и при любом большем значении t. (Такое определение может показаться несколько необычным, но, как мы убедимся, оно имеет свой смысл.) В случае хаотических орбит крупнозернистое будущее не определяется однозначно крупнозернистым прошлым. Только полной последовательностью результатов измерений, выполненных с конечной точностью через ненулевые интервалы времени от t = –∞ до t = +∞, можно задать точную траекторию, но и тогда она, возможно, будет задана неоднозначно. В случае же нехаотических орбит будущее полностью и однозначно определяется крупнозернистым прошлым. Нехаотические системы сохраняют крупнозернистую детерминированность, даже если наблюдения производятся с конечной точностью.

Может показаться, что хаотическая непредсказуемость о которой говорилось выше, обусловлена только крупнозернистостью, т.е. тем, что мы не знаем и не можем знать точного состояния системы, поскольку разбиваем фазовое пространство на конечные ячейки. Позвольте мне сразу же обратить ваше внимание на то обстоятельство, что такое же незнание не приводит к непредсказуемости в случае нехаотических траекторий, и напомнить, что мы ничем не ограничивали тонкость разбиения поверхности на ячейки. Таким образом, сколь бы ни были малы ячейки в конечном разбиении, однозначно определить хаотическую траекторию нельзя ничем иным, кроме полной последовательности номеров ячеек. Если физическая система движется по некоей хаотической траектории и если над ней произведено конечное число наблюдений с конечной точностью, то независимо от того, сколько было наблюдений и сколь велика их точность, их результаты будут казаться случайными и ничем не проявят своей детерминированной сущности. В этом можно видеть первое указание на то, что в случае хаотических систем ньютоновская детерминированность — лишь несбыточная мечта теоретика. Почти все известные ныне динамические системы обнаруживают хаотические траектории.

ПРОСТАЯ МОДЕЛЬ

Тому, кто не искушён в алгоритмическом искусстве генерирования псевдослучайных чисел, итерация вперёд разностного уравнения первого порядка

Xn+1 = 2Xn (mod 1) (3)

покажется бесхитростной детерминированностью. Символ (mod 1) в правой части этого уравнения означает отбрасывание целой части. Стало быть, уравнением (3) задаётся отображение единичного интервала на себя. У такого простого разностного уравнения столь же простое аналитическое решение:

Xn = 2nX0 (mod 1) (4)

Оно произведёт большее впечатление, если в качестве начального значения X0 написать какое-нибудь число в двоичной форме, например

X0 = 0, 11000011101111... . (5)

В этом случае итерации вперёд состоят в сдвиге запятой на один знак вправо и отбрасывании целой части, оказывающейся слева от запятой. Трудно представить себе систему, детерминированность которой была бы более очевидной, чем система, заданная уравнением (3), и тем не менее почти все траектории такой системы хаотические!

Чтобы убедиться в этом, прежде всего заметим: все результаты итерации уравнения (3) принадлежат единичному интервалу (0, 1), и, следовательно, «энергетическая поверхность» в данном случае есть не что иное, как единичный интервал (0, 1). Разобьём эту «энергетическую поверхность» на две ячейки: левую (0≤X<½) и правую (½≤X<1). По двоичному представлению (5) нетрудно определить, в какой — левой или правой — ячейке единичного интервала окажется результат Xn итерации: для этого необходимо лишь знать, какая цифра — 0 или 1 — стоит справа от переместившейся запятой. Если теперь кто-нибудь знающий точную траекторию системы будет сообщать нам только, в какую из ячеек — левую или правую — попадают результаты последовательных итераций Xn, мы сможем выписать последовательность номеров ячеек, состоящую из нулей и единиц (нуль — левая ячейка, единица — правая). Вся последовательность номеров целиком совпадает с двоичным разложением начального значения X0 для заданной траектории. Иначе говоря, тот, кто знает траекторию, просто считывает двоичную последовательность для X0, а тот, кто слушает (или наблюдает), записывает её. Поскольку в общем случае мы не можем определить будущие цифры двоичного разложения числа X0 по какой-либо конечной прошлой части этой последовательности двоичных цифр, истинная траектория в соответствии с нашим определением хаотична.

Хаотические траектории, удовлетворяющие уравнению (3), позволяют нам продемонстрировать весьма общую непредсказуемость в поведении хаотических траекторий, которая находится в опасной близости к истинной случайности.

Пусть снова некто досконально знающий некую траекторию считывает нам по порядку двоичные цифры разложения числа X0. Можем ли мы каким-то способом распознать, что нам действительно называют первые цифры в двоичном разложении результатов итераций Xn, вычисляемых по формуле (3), а не получают эти двоичные цифры, подбрасывая монету без какой бы то ни было (фальшивой) детерминированности? Прежде чем ответить на этот вопрос, рассмотрим сначала последовательности двоичных цифр для каждого числа X0 из множества всех возможных чисел X0 на единичном интервале. Если считать, что единица — это орёл, а нуль — решка, то множество всех X0 совпадает с множеством полубесконечных строк двоичных цифр, взаимно однозначно соответствующих множеству всех возможных полубесконечных серий исходов бросания монеты. Это, разумеется, означает, что строка цифр двоичного разложения числа X0 столь же случайна, как и последовательность исходов бросания. Итак, несмотря на детерминированность системы, описываемой уравнением (3), даже грубое разбиение последовательных итераций Xn на «левые» и «правые» приводит к тому, что эти детерминированно вычисленные результаты итераций прыгают то вправо, то влево по правилу, не отличимому от подлинно случайной последовательности исходов бросаний монеты. Исходы последовательных испытаний на левое–правое полностью не коррелированы, это так называемые испытания Бернулли. Если же единичный интервал разбить на большое число одинаковых по размерам ячеек, то каждая траектория даст последовательности номеров ячеек, образующих марковские процессы.

До тех пор пока разбиение конечно, детерминированность системы никак не будет проявляться. Но отбросим всякую осторожность и рассмотрим бесконечные разбиения с нулевыми размерами ячеек. В этом случае последовательность номеров ячеек есть не что иное, как сама последовательность Xn. Тем не менее эта детерминированная последовательность Xn в действительности является также набором случайных чисел, как нетрудно видеть из предполагаемой случайности строки цифр начального значения X0. Поэтому уравнением (3) иногда пользуются как алгоритмом для получения на компьютере псевдослучайных чисел (псевдо — потому, что компьютер способен производить только конечное число арифметических операций).