Смекни!
smekni.com

Кристаллы в природе (стр. 13 из 19)

Следовательно, приконтактная область ещё больше обеднится основными носителями тока, а это означает сопротивления р-n-перехода значительно возрастёт. Ток во всей цепи будет очень малым, так как он определяется лишь движением не основных носителей тока, которых немного по сравнению с основным.

Зависимость тока в цепи, содержащей р-n-переход, от напряжения источника тока изображена на рисунке 42.

рис.42

При прямом напряжении сила, начиная с некоторого значения, почти линейно зависит от напряжения. Следовательно сопротивления р-n-перехода сначала постепенно уменьшается, а затем остаётся почти постоянным. При обратном напряжении на некотором участке ток почти не зависит от приложенного напряжения. Это говорит о том, что сопротивление р-n-перехода возрастает пропорционально приложенному напряжению. Обратный ток, созданный не основными носителями, незначителен: он будет тем меньше, чем меньше не основных носителей в полупроводнике.

При больших обратных напряжениях, порядка нескольких сотен вольт, сила тока резко возрастает, наблюдается пробор р-n-перехода. Толщина запорного слоя очень мала (10-5см), а напряжённость поля в нем достигает тысяч вольт на метр. Столь сильное поле может освобождать связанные электроны, вырывая их из кристаллической решётки, что вызывает резкое увеличение числа не основных носителей тока. Запорный слой разрушается, и обратный ток резко возрастает.

5.11. р-n-р-переход. Транзисторы.

Полупроводниковые приборы используют для усиления и генерации переменных токов и напряжений. Таки приборы получили названия кристаллических триодов или транзисторов. Чаще всего для устройства полупроводниковых триодов применяют германий и кремний. Это связано с тем, что длина свободного пробега электронов в них больше, чем в других полупроводниках. Кроме этого, кристаллы германия и кремния обладают большой механической прочностью, химической устойчивостью. Важным свойством этих полупроводников является относительно медленная рекомбинация дырок и электронов, поэтому запряжённые частицы противоположных знаков проникают сквозь тонкие слои этих кристаллов без воссоединения друг с другом.

Наиболее распространённым типом транзистора является плоскостной триод. Для изготовления плоскостного триода в монокристалл германия или кремния вводят соответствующие примеси таким образом, что создают прослойку дырочного полупроводника между двумя слоями электронного. В зависимости от этого различают триоды на основе

п-полупроводников (тип р-п-р) (рис43).

При соединении полупроводников с разным типом проводимости на границе раздела образуется область, обедненная носителями

рис. 43 рис.44

тока (запирающий слой). Наличие трёх полупроводников в плоскостном триоде приводит к образованию двух запорных слоёв по обе стороны среднего полупроводника. Таки образом, полупроводниковый триод в отличие от диодов содержит два электронно-дырочных перехода. Он как бы представляет собой два диода, соединённых последовательно, навстречу друг другу.

Но нельзя представить себе транзистор как простую совокупность двух обычных полупроводниковых диодов. Дело в том, что у транзистора ток, текущий через второй переход, в то время как у двух отдельных диодов ток в каждом из их зависит только от величины и полярности приложенного к нему напряжения и совсем не зависит от состояния другого диода.

Для того чтобы полупроводник триод начал усиливать, его надо соединить с двумя внешними источниками тока так, чтобы один электронно-дырочный переход был включён в прямом направлении, а второй - в обратном (рис44).

Переход, включаемый в пропускном направлении, называют эмиттерным, а переход, включаемый в запорном направлении – коллекторным.

Электроды называют соответственно эмиттером и коллектором. Электрод, соединённый со средним проводником, называют основанием или базой.


VI Магнитные свойства вещества.

6.1 Элементарные носители магнетизма

В первой половине XIX в. французский физик Ампер предложил, что особого магнитного поля, не обусловленного электрическими токами, вообще не существуют. По мысли Ампера, магнитные свойства вещества связаны с текущими внутри молекул вещества молекулярными токами. В веществе как бы существуют элементарные магнитики - замкнутые молекулярные токи. Их взаимное расположение и ориентация определяют магнитные свойства вещества.

В настоящее время гипотеза Ампера получила убедительное обоснование и вскрыта физическая сущность этих элементарных «магнитиков».

Атомы вещества обладает магнитными свойствами, в частности, потому, что в нём вокруг положительно заряжённого ядра обращаются электроны. Движущиеся вокруг ядра электроны можно представить как элементарные «магнитики», так как круговой электрический ток создаёт магнитное поле, аналогичное магнитному полю постоянного магнита.

На рисунке 45,а изображён простейший атом, состоящий из ядра и обращающегося вокруг него электрона. Электрический ток, эквивалентный движению электрона (рис 45,б).

а б рис. 45

На этом же рисунке показано и соответствующее круговому току магнитное поле. Направление линий индукции определяется правилом буравчика.

Однако магнитные свойства атома связаны не только с орбитальным движением электронов. Элементарные частицы, электроны, протоны и нейтроны, входящие в состав атома, сами обладают магнитными свойствами. Все они в свою очередь представляют собой тоже элементарные «магнитики», но разные по своим магнитным свойствам.

Магнитные свойства изолированного атома определяются магнитными свойствами в первую очередь электронов, хотя определённую лепту вносят протоны и нейтроны. В случае же твёрдого тела, представляющего совокупность огромного числа атомов, магнитные свойства его определяются не только элементарными частицами, принадлежащими данному атому, но и взаимодействием частиц атомов.

6.2. Орбитальные и спиновые магнитные моменты электрона

Для характеристики магнитного поля электрона, движущегося по замкнутой орбите, вводят понятие орбитального магнитного момента Р0. Это векторная величина, измеряемая произведением элементарного тока I на величину обтекаемой им площади S (Р0=SI). Направление орбитального магнитного момента Р0 определяется правилом буравчика.

Электрон, движущийся по орбите, обладает также и механическим моментом импульса L0.

Движущаяся со скоростью v материальная точка массы m обладает импульсом Р=mvr. Величина этого вектора L, а направление его определяется правилом буравчика.

Электрон кроме орбитального магнитного момента обладает и орбитальным механическим моментом, при этом Р0 и L0 направлены в противоположные стороны.

Величину Горб, равную отношению Р0 к L0, называют гиромагнитным отношением. Для электрона, обращающегося по орбите вокруг ядра, Горб=е/2m, где е - заряд электрона, а m - его масса.

В настоящее время доказано, что электрон, помимо орбитальных магнитных и механических моментов, обладает ещё и собственными магнитными и механическими моментами, получившими название спиновых моментов Рспин и Lспин.

Первоначально спиновые моменты связывали с вращением электрона вокруг своей оси. Благодаря этому и возник термин «спин». Но оказалось, что такое представление неправомерно. Величина спинового магнитного момента Рспин, рассчитанная по значению заряда электрона и скорости его предполагаемого вращения, не совпадает со значением Рспин, полученным экспериментально. Законы движения электронов более сложны и не могут быть описаны на основе классических представлений.

Электрон обладает рядом свойств, которые характеризуются не только его зарядом и массой, но также спиновым магнитным моментом и собственным механическим моментом; Рспин и Lспин электрона такие же неотъемлемые характеристики электрона, как его заряд е и масса m.

Рспин и Lспин характеризуются спиновым гиромагнитным отношением: Гспин= Рспин/ Lспин=е/m, т.е. Гспин=2Горб.

Собственным магнитным моментом обладают также протоны и нейтроны. Но их собственные магнитные моменты на три порядка меньше спинового магнитного момента электрона. Естественно, в первом приближении можно пренебречь магнитными моментами протонов и нейтронов, т.е. магнитным моментом ядра. В электронной теории магнетизма считают, что магнитные свойства атома целиком определяются электронами.

Полный магнитный момент атома Рат представляет собой геометрическую сумму орбитальных и спиновых магнитных моментов электронов, принадлежащих данному атому. Если в атоме Z электронов, то Рат=∑z1P0+∑z1Рспин.

В случае твёрдых тел результаты этого сложения зависят т взаимодействия частиц в твёрдом теле. Разные вещества обладают различными магнитными свойствами.

6.3 Классификация тел по магнитным свойствам

Cамое простое деление тел по магнитным свойствам сводится к выделению слабомагнитных и сильномагнитных тел. известно также деление веществ по магнитным свойствам на диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики.

Впервые деление веществ по магнитным свойствам предложил уже более ста лет назад М.Фарадей. Он помещал образцы различных веществ в неоднородное магнитное поле и обнаружил, что часть из них втягивается из области с малой индукцией в область большей индукции и устанавливается вдоль линии индукции поля, а часть выталкивается из области магнитного поля с большим значением индукции, устанавливаясь поперёк линии индукции. первую группу он назвал парамагнетикой(вдоль), вторую- диамагнетикой(поперёк).