Смекни!
smekni.com

Кристаллы в природе (стр. 7 из 19)

где ∆Т- разность температур частей тела; ∆Т/∆х- изменение температуры на единицу длины; к- коэффициент теплопроводности.

Каждое вещество характеризуется своим коэффициентом теплопроводности, поэтому его величина зависит от внутреннего строения вещества. Чем больше электронов участвует в переносе тепла, тем больше коэффициент теплопроводности; чем быстрее эти электроны движутся, тем больше количество теплоты может быть перенесено за единицу времени; чем дольше электроны будут двигаться без столкновений, тем коэффициент теплопроводности больше. Он также зависит от удельной теплоемкости вещества твёрдого тела.

У неметаллов, не имеющих свободных электронов. Передача тепла происходит за счёт теплового движения частиц, образующих кристаллическую решётку.

Монокристаллы диэлектриков обладают свойством анизотропии теплопроводности так же, как они обладают анизотропией теплового расширения.


IV Механические свойства твёрдых тел

4.1. Виды деформаций.

Атомы и молекулы твёрдых тел находятся в равновесных положениях, в которых результирующая сила равна нулю. При сближении атомов преобладает сила отталкивание, а при их удалении от положения равновесия- сила притяжения. Это обусловливает механическую прочность твердых тел, т.е. их способность противодействовать изменению формы и объёма. Растяжению тел препятствуют силы межатомного притяжения, а сжатия- силы отталкивания.

Среди деформаций, возникающих в твердых телах, различают пять основных видов: растяжения, сжатие, сдвиг, кручение и изгиба, а также деформации бывают упругими и пластическими.

4.2. Теоретическая оценка характеристик механических свойств твёрдого тела и сравнение её с результатами эксперимента.

Зная поверхностную энергию кристалла, и исходя из представлений о строении идеального кристалла, можно теоретически рассчитать основные характеристики механических свойств. Так, например, чтобы рассчитать предел прочности при растяжении образца, необходимо найти силу F, при которой происходит разрыв материала, т.е. нарушается силы взаимодействия между плоскостями в кристалле.

А=F*∆l,

Где ∆l- расстояние, на которое надо удалить плоскости друг от друга, чтобы преодолеть силы их взаимного притяжения.

С другой стороны, разрушения всегда связано с образованием новой поверхности, т.е. с увеличением поверхностной энергии. Как известно, поверхностную энергию можно определить, умножив коэффициент поверхностного натяжения на площадь поверхности. Таким образом, работа, которая совершается при разрыве образца, т.е. при образовании новой поверхности

A=α*2S

Приравниваем выражения и получим: 2αS=F∆l, откуда сила, при которой происходит разрыв материала,

F=2αS/∆l.

Зная силу F, можно определить предел прочности, т.е. то напряжения, при котором происходит разрыв:

σ = F/S; σ =2αS/∆lS; σ = 2α/∆l.

Чтобы показать, как найти модуль Юнга, характеризующий упругие свойства материала, надо предположить, что до самого разрыва образца деформация остаётся упругой, т.е. справедлив закон Гука: σ =Eε.

Следовательно, при абсолютном удлинении ∆α, найдём относительную деформацию ε = ∆α/α.

Следовательно модуль Юнга равен Е= σ/ε.

Мы видим, что только часть механических свойств можно более или менее точно объяснить, исходя из модели идеального газа. Поэтому была выдвинута гипотеза о том, что причина расхождения теоретических расчётов и экспериментальных результатов заключается в несовершенстве кристаллической решётки. Эта гипотеза нашла своё блестящее подтверждение в последующих экспериментальных исследованиях.

Таким образом, некоторые механические свойства материалов не связаны со структурными несовершенствами. Эти свойства называют структурно – нечувствительными свойствами. Те же механические свойства, которые тесно связаны со структурными несовершенствами кристаллов или с дефектами кристаллов, называют структурно - чувствительными свойствами.

4.3.Точечные дефекты и их образования

Точечные дефекты - это нарушение кристаллической решётки в изолированных друг от друга точках. К точечным дефектам относятся вакансии, т.е. такие узлы решётки, в которых нет атомов (дырки) (рис48а). Точечными дефектами могут быть атомы внедрения, т.е. лишние атомы, поместившиеся в промежутках между атомами, расположенными в узлах кристаллической решётки (рис 48б). Это могут быть и примеси (инородные атомы), занимающие места в решётке (рис48в). Размеры точечных дефектов примерно равны диаметру атома.

Образования дефектов: в результат теплового движения атомов и их взаимодействия возможны отклонения энергии отдельных атомов от среднего значения, при котором атом удерживается в узле кристаллической решётки. При этом большие отклонения от средней величины менее вероятны, чем малые отклонения. Однако большие отклонения, превышающие среднее значение энергии на несколько порядков всё-таки возможны.

Дефекты могут появиться также в процессе роста кристалла.

Образование точечных дефектов возможно в процессе роста кристалла и из-за флуктуации энергии.

Экспериментально подтверждает наличие точечных дефектов в кристаллах явление диффузии в твёрдых телах.

На самом деле, в кристалле без дефектов никакой диффузии не должно было бы быть. Если атомы колеблются около узлов кристаллической решётки и не «покидают» эти положения, то не может быть проникновения атомов одного кристалла в другой.

Между тем установлено, что диффузия в твёрдых телах происходит, хотя и в меньших масштабах, чем в газах и жидкостях. Особенно интересно, что интенсивность этого процесса растёт с увеличением температуры.

Согласно этой теории диффузия в кристаллах происходит за счёт движения атомов внедрения, движения вакансии или какого-либо обмена местами между атомами. Для того чтобы атомы внедрения «перебрались» в другие промежутки между узлами, а вакансии - в другие узлы, необходимо, чтобы атомы, составляющие непосредственное окружение точечного дефекта, «расступились». При повышении температуры атомы «расступаются» чаще и дефекты перемещаются по кристаллу быстрее, а следовательно, и процесс диффузии происходит быстрее. Кроме того, с ростом температуры увеличивается и число точечных дефектов. Однако определяющим фактором в увеличении интенсивности диффузии при увеличении температуры является не рост числа дефекта, а их продвижение.

4.4 Дислокации

Дислокации - это перемещения. Различают два вида дислокаций: краевую и винтовую. Краевая дислокация (рис24).

рис. 24 рис. 25

Искажение кристаллической структуры вызвано тем, что, и части объёмного кристалла в процессе его роста возникла лишняя атомная «полуплоскость». Искажения сосредоточено в основном вблизи нижнего края «полуплоскости» «лишних» атомов. Под дислокацией в подобных случаях понимают линию, проходящую вдоль края лишней атомной «полуплоскости».

Искажение сосредоточено вблизи дислокационной линии. На расстоянии же нескольких атомных диаметров в сторону искажения настолько малы, что в этих местах кристалл имеет почти совершенную форму. Искажения возле края «лишней полуплоскости» вызваны тем, что ближайшие атомы как бы «пытаются» согласовать своё расположение с резким обрывом «лишней полуплоскости».

Любая царапина на поверхности кристалла может стать причиной краевой дислокации. Действительно, царапину на поверхности кристалла можно рассматривать как нехватку одной атомной плоскости. В результате теплового движения атомы из соседних областей могут перейти на поверхность, а дислокация тем самым переместится во внутрь.

Винтовая дислокация (рис 25).

Образования винтовой дислокации можно представить таким образом. Мысленно надрежем кристалл по плоскости и сдвинем одну его часть относительно другой по этой плоскости на один период решётки параллельно краю надреза. При этом линия искажения пойдёт вдоль края разреза. Эту линию и называют винтовой дислокацией. При винтовой дислокации лишнего ряда атомов нет. Искажение пространственной решётки кристалла состоит в том, сто атомные ряды изгибаются и меняют своих соседей.

Установлено, что винтовые дислокации чаще всего образуются во время роста кристалла. Однако приложение напряжений может увеличить число винтовых дислокаций.

Дислокации, как и точечные дефекты, могут перемещаться по кристаллической решётке. Однако движение дислокаций связано с большими ограничениями, так как дислокация всегда должна быть непрерывной линией. Возможны два основных вида движений дислокаций: переползание и скольжение. Переползание дислокаций происходит благодаря добавлению или удалению атомов из лишней полуплоскости, что бывает вследствие диффузии. При скольжении дислокации, лишняя полуплоскость, занимавшая определённое положение в кристаллической решётке соединяется с атомной плоскостью, находящейся под плоскостью скольжения, а соседняя атомная плоскость становится теперь лишней полуплоскостью. Такое плавное скольжения линии дислокации вызывается действием напряжений сдвига, приложенных к поверхности кристалла.

Наблюдения показывают, что перемещение дислокаций в реальном кристалле в одних случаях может быть облегчённо, в других – затруднённо, в зависимости от характера тех искажений, которые вносит дислокация в кристаллическую решётку.

4.5. Экспериментальные методы изучения дефектов кристаллов

В настоящее время с помощью ионного проектора и электронного микроскопа получают фотографии структуры кристаллов с имеющимися в них дефектами. Для изучения дефектов кристаллов используют также метод протравливания. На поверхность кристалла наносят химические травители, которые наиболее активно взаимодействуют с теми областями кристалла, в которых сосредоточены наибольшие искажения, вызванные дислокациями.