Смекни!
smekni.com

Развитие Физики во второй половине ХХ в. (стр. 4 из 9)

Атомные ядра при взаимодействиях с элементарными частицами испытывают изменения, которые сопровождаются увеличением или уменьшением кинетической энергии участвующих в этих превращениях элементарных частиц. Эти ядерные реакции происходят, когда частицы вплотную приближаются к ядру и попадают в сферу действия ядерных сил. Ядра некоторых тяжелых элементов, например, урана, при бомбардировке замедленными нейтронами могут делиться на части. При этом испускаются 2-3 нейтрона и гамма-лучи. Одновременно выделяется большое количество энергии. Освобождение нейтронов при делении ядра позволяет осуществлять цепную реакцию деления урана. Для ее стационарного течения необходимы условия, при которых коэффициент размножения нейтронов должен быть строго равен 1, т.к. уже при к=1,01 почти мгновенно происходит взрыв. Осуществление управляемой цепной реакции производится в ядерном(или атомном) реакторе.

В развитии физики элементарных частиц можно выделить три этапа(9. с. 331, 340, 345, 346, 353). Первый – от электрона до позитрона(1897 – 1932гг.). На этом этапе электрон, протон и нейтрон считали неделимыми и неизменными. Второй этап – от позитрона до кварков(1932 – 1964гг.). Выяснилось, что неизменных частиц не существует, что ни одна из элементарных частиц не бессмертна даже в отсутствие какого-либо воздействия извне. Например, находящийся вне атомного ядра свободный нейтрон живет в среднем 15 мин. Стабильные же частицы, такие как фотон, электрон, протон и нейтрино, могли бы сохранить свою неизменность, если бы каждая из них была бы одна в целом мире. Но все элементарные частицы имеют свои античастицы, при столкновениях с которыми происходит аннигиляция: обе частицы исчезают, превращаясь в другие частицы. Например, при аннигиляции пары электрон-протон возникают фотоны, а аннигиляция пары нуклон-антинуклон сопровождается рождением мезонов. Взаимные превращения элементарных частиц друг в друга являются главной формой их существования. Таким образом, на втором этапе исчезло представление о неизменности элементарных частиц, но сохранилась идея об их неразложимости. По современным представлениям, элементарные частицы – это первичные неразложимые частицы, из которых построена вся материя(при этом неделимость не означает, что у них отсутствует внутренняя структура). И хотя элементарные частицы уже и неделимы далее, они неисчерпаемы по своим свойствам. Третий этап – от гипотезы о кварках до наших дней. В 60-е годы возникли сомнения в том, что все выделенные к этому времени частицы можно отнести к разряду элементарных. Основанием для этих сомнений послужило то, что число этих частиц велико. Поэтому в 1964г. Гелл-Манном была предложена модель, согласно которой все частицы, участвующие в сильных взаимодействиях, построены из более фундаментальных(первичных) частиц – кварков, имеющих дробный электрический заряд. Протоны и нейтроны состоят из трех кварков. Вообще же число различных кварков равно 6(верхний, нижний, очарованный, странный, истинный, красивый). Кварки лишены внутренней структуры. В свободном состоянии кварки пока не обнаружены, но опыты по рассеянию электронов очень высокой энергии на протонах и нейтронах доказывают их существование. Кроме кварков, участвующих в сильных взаимодействиях, выделяются также легкие элементарные частицы, не участвующие в них. Они называются лептонами, и число их тоже равно 6(электрон, три сорта нейтрино и еще две частицы: мюон и тау-лептон). Элементарные частицы различаются и по значениям спина – их собственного момента количества движения, измеряемого в единицах постоянной Планка. Кварки и лептоны имеют спин, равный 1/2 , и составляют группу фермионов – элементарных частиц с полуцелым спином(1/2, 3/2, 5/2 и т.д.), являющихся составными элементами вещества. Другую группу составляют бозоны – элементарные частицы с целым спином(0, 1, 2, 3 и т.д.), являющиеся переносчиками взаимодействий. Бозоны тоже разделяются на две подгруппы. Переносчиком сильного взаимодействия между кварками является глюон(спин равен 1), а единого электрослабого взаимодействия – фотоны и частицы W-,W+,Z0.

Теоретической физике пока сложно ответить на ряд вопросов, например: как построить квантовую теорию гравитации и объединить ее с теорией остальных взаимодействий; почему существует только 6 типов кварков и 6 типов лептонов; почему масса нейтрино очень мала и т.д.(9. с. 416). Эти и многие другие вопросы требуют дальнейшего исследования. Но стремительное проникновение в глубь материи, новое понимание пространства, времени, причинно-следственных связей, которыми отличается физика ХХ века, коренным образом изменило представление об окружающем нас мире.

Начавшаяся в 50-х гг. в США научно-техническая революция(НТР) в последующие десятилетия охватила все промышленно развитые страны мира. Наука и технология стали ведущей силой цивилизации. Бурное развитие физики повлекло за собой множество открытий, получивших инженерно-промышленное воплощение.

Открытые физиками огромные запасы внутриатомной энергии, первоначально использовавшиеся в военных целях, привели к созданию атомной и ядерной техники, обслуживающей мирные отрасли хозяйства. Тепло, снимаемое с урановых стержней атомного реактора, можно использовать для нагрева воды до высоких температур, и полученный таким образом пар применять для производства электроэнергии. Этот принцип лег в основу строительства атомных электростанций. Первая в мире АЭС дала ток в 1954г. в подмосковном Обнинске(1. с. 438). На том же принципе были сконструированы и ядерные двигатели для морских судов. Первым судном с таким двигателем стала американская подводная лодка «Наутилус», спущенная на воду в 1955г. А первым «мирным» судном – советский ледокол «Ленин», построенный в 1957г.(1. с. 439).

В атомных электростанциях пар вращает турбину, связанную с электрогенератором. Но исследования плазмы показали, что можно создать электростанции без турбин. При пропускании плазмы через магнитное поле, направленное перпендикулярно ее движению, возникает сила, разделяющая электроны и положительно заряженные ионы плазмы, и они начинают двигаться в противоположные друг другу стороны. Попадая на электроды, они создают разность потенциалов. На этом принципе основано действие плазменных генераторов электрического тока, которые называются магнитогидродинамическими, или МГД-генераторами. Их главным достоинством является гораздо более высокий коэффициент полезного действия(9. с. 265). Но наиболее широко плазма применяется в светотехнике – в газоразрядных лампах, освещающих улицы, в лампах дневного света, используемых в помещениях. А кроме того, в различных газоразрядных приборах: выпрямителях тока, стабилизаторах напряжения, плазменных усилителях и т.д.(9. с. 261).

Благодаря квантовой теории были открыты удивительные эффекты, воплощение которых в приборы произвело переворот в технике. Наиболее впечатляющими из них являются квантовые генераторы. В 1916г. Эйнштейн впервые высказал идею индуцированного излучения. В годы второй мировой войны большое развитие получила техника сверхвысоких радиочастот в связи с проблемами радиолокации. Объединение идеи вынужденного излучения с широким использованием коротких электромагнитных волн привело в 1954г. к почти одновременному созданию советскими учеными Н.Г.Басовым и А.М.Прохоровым и американским физиком Ч.Таунсом квантового генератора, излучающего не видимый свет, а радиоволны, и названного мазером. Принцип его действия состоял в том, что при пролетании пучка молекул аммиака через неоднородное электрическое поле возбужденные и невозбужденные молекулы отклонялись в разные стороны, после чего невозбужденные молекулы удалялись, а возбужденные создавали мощные радиоволны длиной около 1 см(1. с. 440-444). Так были заложены основы квантовой электроники, и в 1964г. всем трем ученым была присуждена Нобелевская премия по физике. Первый лазер был создан в 1964г. американским физиком Т.Мейманом. В отличие от мазера, этот квантовый генератор создает волны оптического диапазона. В качестве рабочего вещества в нем использовался рубин. В том же 1960г. в США А.Джаваном и др. физиками был построен первый газовый лазер, работающий на смеси гелия и неона. В 1962г. в Америке появился полупроводниковый лазер, а в 1965г. Б.И.Степановым и А.И.Рубиновым в СССР был создан лазер, рабочим веществом которого служили органические красители – растворы анилиновых красок в воде, спирте и иных растворителях. Квантовая электроника применяется сейчас в самых различных областях. Лазеры дали технике сверхточные часы(ошибка в ходе составляет 1 мин за 300000 лет) и высокочувствительные усилители. Лазерный луч просверливает отверстия в алмазе и делает тонкие хирургические операции. С помощью лазеров осуществляется как сверхдальняя космическая связь, так и совершенно новая объемная фотография – голография(9. с. 432).

Двадцатый век называют еще веком электроники и кибернетики. Сегодня даже самое обычное производство, не говоря уже об освоении космического пространства и об атомной энергетике, невозможно представить без первоклассной электроники и автоматики, ставших важнейшими компонентами научно-технической революции. Возникновение электроники обусловило в середине ХХ в. переход от метровой к миллиметровой технологии. С последующим сокращением размеров в 1000 раз началась эра твердотельной микротехнологии, с которой связан поразительный прогресс вычислительной техники во второй половине ХХ в. Но изделия метровой, миллиметровой и микронной технологий работают на базе одних и тех же законов классической физики. Например, закон Ома в равной степени справедлив и для бытового электронагревателя, и для интегральной микросхемы. Однако классические законы перестают работать при размерах объектов меньше 0,5 мкм(1 микрометр = 10-6 метра). При уменьшении микронных изделий в 1000 раз вступают в действие законы квантовой физики, поскольку происходит переход от сплошных веществ к атомно-молекулярным структурам(9. с. 267-272). В 1974г. японский исследователь Танигучи предложил термин нанотехнология для описания процессов, происходящих в пространстве с линейными размерами от 0,1 до 100 нм(1 нанометр = 10-9 метра). Практическая же нанотехнология родилась в 1981г. с созданием сканирующего туннельного микроскопа. Немецкий ученый Г.К.Бинниг и швейцарский физик Г.Рорер за это изобретение были удостоены Нобелевской премии за 1986г. С помощью этого микроскопа можно перемещать отдельные атомы и молекулярные фрагменты в заранее определенные места. Переход к нанотехнологии означает новую промышленную революцию. Огромные перспективы сулит ее использование в таких областях, как вычислительная техника(наноразмерные квантовые компьютеры), информатика(модули памяти, способные хранить триллионы битов информации в объеме вещества с булавочную головку), коммуникационные линии, производство промышленных роботов, биотехнология, медицина, космические разработки. Однако следует предвидеть и возможные негативные последствия развития нанотехнологии для безопасности мира.