Смекни!
smekni.com

Динамічні процеси та теорія хаосу (стр. 2 из 7)

T > st (1.11)

яке відразу вирішує питання про те, як природним чином ввести відображення (1.9).

Якщо виконана умова (1.11), то існує природна структура відображення (1.9). Вона включає послідовність моментів {tk}, розділених інтервалами ~T між областями, де відбувається помітна зміна дії. Рівняння відображення виходять в результаті зшивання цих змін на двох послідовних інтервалах.

Вся відмінність в змінах дії поміщена у вигляді функцій g1, g2.

Ці прості міркування дозволяють без великих втрат виключити деякі непотрібні ускладнення. По-перше, вважатимемо, що st > 0, тобто зміна дії відбувається миттєво (удар). З фізичної точки зору це означає, що часовий інтервал st зміни дії менше всіх характерних часів завдання. По-друге, рахуватимемо інтервали T між моментами tk постійними.

Гамільтонін описаної системи може бути представлений в (p, x) -пространстве у вигляді

. (1.12)

На осцилятор з гамильтонианом H0 (p, x) діють миттєві поштовхи через постійні інтервали часу Т. Между поштовхами рух є вільним і передбачається відомим.

Тому зшивання рішень на двох різних інтервалах може бути проведена точно. Покажемо, як це лается.

Виведення відображення. Повернемося знову до змінних действие—угол:

(1.13)

де V(I ?) виходить з V(х) заміною змінних. Рівняння руху (1.7) набирають вигляду

(1.14)

Хай поштовх відбувається при деякому t = t0. Визначимо -отображение таким чином:

(1.15)

Відображення

виникає як послідовна дія удару
і вільного руху (обертання на торі)
:

(1.16)

(Мал. 1.5). Маємо для

(1.17)

Рис. 1.5. Побудова універсального відображення.

Щоб отримати

, проінтегруємо систему (1.14) в малій околиці біля моменту поштовху (t0- 0, t0 + 0). Врахуємо при цьому, що змінна x безперервна. Тому в крапці t0 функція V(x)= V(I ?) безперервна. Маємо

(1.18)

Рівняння (1.18) визначають

:

(1.19)

Підставляючи (1.17), (1.19) в (1.16), отримуємо рівняння (1.15) в явному вигляді:

(1.20)

Це і є універсальне відображення. Воно допускає ще одне спрощення, якщо потенціал обурення залежить тільки від узагальненої координати ? і не залежить від імпульсу I. Тоді (1.20) перетворюється на наступне відображення:

(1.21)

Остання модифікація пов'язана з вибором функції V(?). Це має бути періодична функція, і можна покласти V(?)= V0cos ?. Ще одне спрощення пов'язане з простим вибором функції ?(I): ? (I) = ?0 + ?’I. Це дає

(1.22)

де позначено

(1.23)

Рівняння (1.22) називають також стандартним відображенням зважаючи на його максимальну простоту.

Приведемо також вид гамильтониана, відповідного спрощеному відображенню (1.22):

(1.24)

Лінійний член ?0I у гамильтонианеH зникає при ?0 = 0. Квадратичний член по дії I при цьому залишається, оскільки через визначення (1.23) величина ??0 відмінна від нуля при ?0 = 0.

Структура фазового простору. Запишемо систему (1.22) в спрощеній формі, опустивши постійне зрушення фази ?0T і перейшовши до безрозмірної дії:

Отримуємо

(1.25)

Нерухомі точки системи (1.25) знаходяться з рівнянь

тобто

Звідси знаходимо особливі крапки

Точки r1є нестійкими крапками. Поведінка траєкторій поблизу них показує, що ці точки гіперболічного типа.


Рис. 1.6. Фазовий портрет стандартного відображення при малих значеннях K

Рис. 1.7. Фазовий портрет стандартного відображення при K : 1;Ci – інваріантні криві

Точки r2 є еліптичними, якщо К0 < 4. Фазовий портрет системи для малих K0приведений на мал. 1.6. Із зростанням К0 в системі відбуваються біфуркації народження кратних періодів, а при K0поблизу одиниці з'являється в околиці сепаратрисыширокий стохастичний шар (мал. 1.7). Різні стохастичні шари відокремлені один від одного інваріантними кривими, що існують унаслідок теореми Колмогорова—арнольда—мозера.

Стохастичне море. Подальше збільшення параметра K0приводить до руйнування КАМ-КРІВИХ і злиттю стохастичних шарів. Утворюється стохастичне море, в якому, проте, існують острівці стійкості (мал. 1.8). Острівці залишаються завжди при будь-яких скільки завгодно великих значеннях K0. Їх розмір в цьому випадку має порядок 1/K0, а відображення (1.25) із зростанням К0 стає все ближчим до У-системе.

Наявність острівців стійкості є фундаментальною властивістю реальних фізичних систем. Все сказане вище без зусиль переноситься на універсальне відображення (1.20), і відзнака виражається кінець кінцем лише у формі і числі острівців.

Сама структура острівців також є незвичайно складною заплутаною картиною. Існують системи острівців різних порядків розмірів, що все більш і більш зменшуються (мал. 1.9). Утворення стохастичного шару відбувається в околиці сепаратрисы при K0 < 0,97, а в області значень K0 > 0,97 відбувається злиття стохастичних шарів з утворенням спільного стохастичного моря. Таким чином, область переходу до хаосу є дуже вузькою.

Рис. 1.8. Утворення стохастичного моря

Рис. 1.9. Острівці різних порядків в стохастичному морі. Окремі, безладно розташовані крапки належать одній траєкторії


У міру подальшого зростання параметра K0 > 1 стохастичне море заповнює все велику частку фазового простору. В той же час острівці стійкості зменшуються в своїх розмірах. Одночасно зменшується і відносна міра острівців.

1.4 Стохастичні аттрактори

Відзначимо деякі істотні сторони появи стохастичності в негамильтоновских диссипативних системах. Існування дисипації приводить до зменшення фазового об'єму системи.

Фінітность руху. Наступне нижче зауваження перш за все відноситься до поняття локальної нестійкості. Очевидно, що поява цієї нестійкості формулюється настільки універсальним способом, що він не пов'язаний з конкретним детальним видом динамічної системи.

Хай, наприклад, рівняння руху має тривіальний вигляд:

(1.26)

Його рішення

показує відразу нестійкість щодо обурень початкової умови:

(1.27)

З іншого боку, очевидно, що, не дивлячись на властивість (1.27), ніякої стохастичності в системі (1.26) не немає. Парадокс пов'язаний з тим, що система (1.26) здійснює инфинитное рух, в якому траєкторії можуть розходитися достатньо далеко і достатньо швидко із-за необмеженості фазового простору.

Ситуація змінюється, якщо замість (1.26) розгледіти систему, фазовий простір якого фінітного

(1.28)