Смекни!
smekni.com

Динамічні процеси та теорія хаосу (стр. 4 из 7)

2.2 Консервативний хаос

Хоча останнім часом активність в області нелінійної динаміки пов'язана переважно з хаосом в диссипативних системах, вже чималий час відома можливість хаотичної поведінки в бездиссипативных, або так званих консервативних, системах. По суті справи, саме пошук вирішень рівнянь небесної механіки привів в кінці XIX ст деяких математиків, наприклад Пумнкаре, до припущення, що вирішення багатьох завдань динаміки чутливі до початкових умов і тому деталі руху тіл по орбітах виявляються непередбачуваними.

Фізичні приклади консервативних систем пов'язані з проблемами розрахунку орбіт в небесній механіці і поведінки часток в електромагнітних полях. Зрозуміло тому, що велика частка роботи в цій області була виконана тими, хто займається фізикою плазми, астрономією і астрофізикою.

Хоча в більшості земних динамічних систем відбуваються деякі втрати енергії, в деяких з них, як, наприклад, в структурованих конструкціях або мікрохвильових резонаторах, загасання дуже слабо, і на кінцевих інтервалах часу вони можуть поводитися як консервативні або гамильтоновы системи. Як приклад можна привести технологічну конструкцію, що знаходиться на навколоземній орбіті. Крім того, динаміка консервативних систем є граничним випадком динамічного аналізу при слабкому загасанні.

Системи, в яких зберігається енергія, в типових випадках виявляють тих же типів обмежених коливальних рухів, що і системи з втратами. До таких рухів належать періодичні, субгармонійні, квазіперіодичні і хаотичні. Одна з основних відзнак між коливаннями в системах з втратами і без них полягає в тому, що хаотичні орбіти в системах з втратами виявляють фрактальну структуру фазових портретів, тоді як в бездиссипативных системах така структура відсутня.

У консервативних системах хаотичні орбіти прагнуть однорідно заповнити всі частки деякого підпростору у фазовому просторі; іншими словами, вони характеризуються однорідною щільністю вірогідності в обмежених областях фазового простору. Тому бездиссипативные системи мають інші відображення Пумнкаре, чим системи з дисипацією. Проте як і раніше застосовна така міра розбіжності близьких орбіт, як показники Ляпунова. Прикладом бездиссипативной системи є кулька, що підскакує на пружному столі, причому стіл рухається і передбачається, що при зіткненнях не втрачається енергія, тобто вони упруги.

3. Фізичні експерименти з хаотичними системами

3.1 Хаос в пружній безперервній середі

Ф. Мун досліджував проблеми двох типів. У завданнях одного класу рівняння в приватних похідних, що описує рух стрижня, лінійно, але нелінійні масові сили або граничні умови. У інших завданнях руху достатньо сильні, щоб в рівняннях руху стали істотними нелінійні члени.

При малих вигинах і відхиленнях рівняння руху пружного стрижня має вигляд

(3.1)

де ? — поперечний зсув стрижня, D — коефіцієнт пружної жорсткості, а m — маса на одиницю довжини. Права частка рівняння описує розподілені масові сили або внутрішнє загасання. У багатьох дослідах для створення нелінійних масових сил використовувалися постійні магніти.

Коли зсув і нахил осі стрижня великі, горизонтальний і вертикальний зсув і нахил характеризуються змінними (u ?, T), зв'язаними співвідношеннями

(3.2)

де ( )' = }/}s, а s — довжина, вимірювана уздовж деформованого стрижня (рис. 3.1).


Рис. 3.1. Плоска деформація пружного стрижня.

Тоді рівняння збереження імпульсу набувають вигляду

(3.3)

Де

У цих рівняннях (fu, f?) — компоненти масової сили, а T — осьова сила, що створює напругу в стрижні. Нелінійні члени відрізняються від характерних для механіки рідин тим, що сюди не входять переносні, або кінематичні, нелінійності. Крім того, локальна залежність напруги від деформації лінійна. Нелінійні члени виникають із-за зміни геометричної форми і називаються геометричними нелинейностями.

Магнітопружний зігнутий стрижень. Пружний стрижень, закріплений з одного боку, згинається магнітами, які поміщені поблизу його вільного кінця. Магнітні сили роблять нестійким прямий, незігнутий стан стрижня і створюють декілька положень рівноваги, одне з яких показане на мал. 3.2а. Після того, як такий вигин створений, система аналогічна частці в потенціалі з двох або більш за ями. Весь пристрій поміщається на вібростенд і коливається з постійною амплітудою і частотою. При слабких коливаннях стрижень залишається поблизу одного з положень рівноваги. Проте із зростанням амплітуди стрижень може вискочити з потенційної ями і зачинаються хаотичні рухи, при яких стрижень переходить з однієї ями в іншу. Відображення Пумнкаре для цього процесу показане на мал. 3.2б. (це відображення називається «Квіткою Пумнкаре».)

Рис. 3.2а. Пружний сталевий стрижень, зігнутий магнітними масовими силами і прикріплений до періодично рухомої підстави.

Рис. 3.2б. Отримане в експерименті відображення Пумнкаре для хаотичного руху стрижня, подовжньо зігнутого магнітними силами («квітка Пумнкаре»).


Для опису цієї системи використовується багатомодове наближення рівняння (3.1), в якому враховані нелінійні магнітний сили, що діють на вільний кінець стрижня.

Для стрижня із загасанням, закріпленого з одного боку, добрі результати дає одномодове наближення. Відповідне рівняння можна записати у вигляді системи трьох рівнянь першого порядку. Тут змінна x є безрозмірною амплітудою гармоніки:

(3.4)

Відображення Пумнкаре (рис. 3.2б) має вигляд, характерний для двовимірних точкових відображень. У типових випадках експерименти не виявили подвоєнь періоду перед переходом до хаотичного руху. Передвісниками хаосу часто виявлялися непарні субгармоніки.

Видозміною цього експерименту є перевернутий маятник з пружиною. Якщо пружина слабка, то, як і в завданнях з двома потенційними ямами, перевернутий маятник має два положення стійкої рівноваги.

Зігнутий стрижень з двома мірами свободи. Щоб вивчити роль додаткових мір свободи, був створений пружний аналог сферичного маятника, в якому використаний стрижень кругового перетину. Для вигинання стрижня як і раніше використовувалися магніти, але тепер його кінець міг рухатися в двох напрямах. В результаті з'явилися несумірні природні частоти і квазіперіодичні коливання, які врешті-решт перетворилися на хаотичних (рис. 3.3).


Рис. 3.3. а – Схема пружної лозини, що здійснює тривимірні рухи в парі потенційних ям, створених двома магнітами; б – накладені один на одного траєкторія руху у фазовому просторі і відображення Пумнкаре для квазіперіодичного руху (вгорі); відображення Пумнкаре для хаотичного руху (внизу).

Ета експериментальна модель описується рівняннями для двох зв'язаних осциляторів:

(3.5а)

(3.5б)

Члени f0і f2описують дію тяжіння, якщо початкове положення стрижня не вертикально, а члени, що зв'язують ці рівняння, потенційні. Якщо зв'язок слабкий, можна вирішити рівняння (3.5б) відносно біля(t), і рівняння для х(t) набуває вигляду рівняння параметричних коливань.

Пружний стрижень з нелінійними граничними умовами. Для того, щоб отримати хаотичні коливання в механічній системі, не обов'язково мати декілька положень рівноваги. Будь-яка сильна нелінійність також, швидше за все, викличе хаотичний шум при періодичній зовнішній дії. Одним з прикладів системи з одним положенням рівноваги є пружний стрижень з нелінійними граничними умовами. Нелінійними називаються такі граничні умови, які залежать від руху. Наприклад, передбачимо, що кінець стрижня може вільно рухатися в одному напрямі, а рух в іншому напрямі заборонений. Хаотична поведінка такого стрижня показана на рис. 3.4. Модифікацією цього прикладу є двостороннє обмеження із зазором, при якому вигин стрижня може відбуватися в трьох різних режимах.

Рис. 3.4. Хаотичні коливання пружного стрижня з нелінійною граничною умовою.

3.2 Тривимірні пружні стрижні і струни

За певних умов вимушений плоский рух нелінійного пружного стрижня (балки, смужки) описуваний рівнянням (3.3), стає нестійким і виникають тривимірні рухи. Схоже явище відоме і для плоского руху натягнутої струни. Було проведено декілька експериментів з товщиномірами — дуже тонкими, гнучкими, пружними сталевими стрижнями прямокутного перетину (наприклад, 0,25 мм x 10 мм x 20 см) (мал. 3.5). Їх слабкий бічний рух (по відношенню до незігнутого стрижня) майже неможливий без подовжнього вигину або перекосу локальних поперечних перетинів. Проте при сильному вигині в «дозволеному» напрямі стають можливими і бічні зсуви, що супроводяться перекосом поперечних перетинів.