Смекни!
smekni.com

Исследование работ Фарадея по электричеству (стр. 16 из 18)

Главная причина его невосприятия - необычность предложенных идей. В общепринятом понимании тогда понимании теория Максвелла только описывала электромагнитные явления на строгом математическом языке, но не давала их объяснения. Объяснить - значило, по мнению физиков того времени, построить механическую модель явления. Механика представлялась незыблемым фундаментом всех разделов физики. Поэтому большинство учёных считало, что для завершения электромагнитной теории необходимо ещё открыть механическую интерпретацию уравнений Максвелла. В плену этого предвзятого представления находились все физики. Не избежал этого и Максвелл. В первых своих работах по электромагнетизму он основное внШмание отводил именно механическим моделям. Подчёркивая непривлекательность одного из предложенных объяснений, Пуанкаре писал: ''Можно подумать, что читаешь описание завода с целой системой зубчатых колёс, рычагами, передающими движение и сгибающимися от усилия, центробежными регуляторами и передаточными ремням''. Однако позднее Максвелл меняет свою точку зрения, он выражает желание ''просто направить внимание читателя на механические явления, которые помогут ему в понимании электрических явлений. Все подобные фразы в настоящей статье должны пониматься как иллюстративные, а не объяснительные''.

Нарушение соответствия между механикой и электродинамикой стало причиной глубокого кризиса физики. Кризис физической теории, вызванный проблемой объяснения установленных на опыте свойств света, усугубился неожиданно последовавшими как из рога изобилия величайшими открытиями совершенно новых и удивительных явлений.

Начиная с 1895 года, когда Рентген открыл проникающие лучи, буквально каждый следующий год приносил ошеломляющиее открытие:

· 1896 год - открытие явления радиоактивности,

· 1897 год - открытие электрона,

· 1898 год - открытие радия и полония,

· 1899 год - открытие сложного свойства радиоактивного излучения.

Пуанкаре пристально следил за крутой ломкой, происходящей в физике конца XIX века. В это время голландский физик Г. А. Лоренц считает, что теория Максвелла нуждается в дополнении, так как в ней не учитывается структура вещества. В ней свойства тел характеризуются различными коэффициентами: диэлектрической и магнитной проницаемостью, проводимостью. ''Мы не можем удовлетвориться простым введением для каждого вещества этих коэффициентов, значения которых должны определяться из опыта; мы будем принуждены обратиться к какой-нибудь гипотезе относительно механизма, лежащего в основе этих явлений. Эта необходимость привела к представлению об электронах, т. е. крайне малых электрически заряженных частицах, которые в громадном количестве присутствуют во всех весомых телах'', - писал Лоренц.

Все эти вставшие перед физикой проблемы настоятельно требовали выработки новых физических понятий и представлений и создания на их основе теоретического обобщения всей совокупности недавно полученных экспериментальных данных.

В 1895 г. в работе ''Опыт теории электрических и оптических явлений в движущихся телах'' Лоренц даёт систематическое изложение электронной теории, опирающейся, с одной стороны, на теорию Максвелла, а с другой - на представление об атомарности электричества.

В начале 90-х годов XIX в. Г. Лоренц на основе своей электронной теории и гипотезы о неподвижном эфире выводит уравнения электромагнитного поля для движущихся сред. И делает очень важный вывод: никакие оптические и электромагнитные опыты, проведенные в равномерно и прямолинейно движущейся системе отсчёта, не в состоянии обнаружить этого движения.

Таким образом, Лоренц сформулировал принцип относительности для электромагнитных процессов. В 1904 г., называя принцип относительности в числе основных принципов физики.

Развивая электродинамику и стремясь объяснить опыты, Лоренц и Пуанкаре опирались на концепцию эфира. Подойдя к принципу относительности, они не смогли поставить вопрос о постоянстве и, особенно о предельном значении скорости света. Это и было сделано А. Эйнштейном (1879-1955).

Основополагающая работа Эйнштейна по теории относительности называлась ''К электродинамике движущихся сред''. Она поступила в редакцию журнала ''Анналы физики'' 30 июня 1905 г. Работа состояла из двух частей. В первой из них были изложены основы новой теории пространства и времени, во второй - применение этой теории к электродинамике движущихся сред. В основу своей теории Эйнштейн кладёт два постулата:

1. Принцип относительности - в любых инерциальных системах все физические процессы - механические, оптические, электрические и другие - протекают одинаково.

2. Принцип постоянства скорости света - скорость света в вакууме не зависит от движения источника и приемника, она одинакова во всех направлениях, во всех инерциальных системах и равна 3 108 м/с.

На статью Эйнштейна обратил внимание редактор журнала ''Анналы физики'', профессор Макс Планк. Работа Эйнштейна вызвала у него интерес возможностью провести ''такое грандиозное упрощение всех проблем электродинамики движущихся тел, что вопрос о допустимости принципа относительности должен ставиться в первую очередь в любой теоретической работе, посвященной этой области''. Вместе с тем, не найдя в работе Эйнштейна того обобщения уравнений механики, которое требовалось новым принципам относительности, он сам приступил к решению этой задачи. Свои результаты Планк доложил 23 марта 1906 г. на заседании Немецкого общества. Отметив, что ''принцип относительности, предложенный недавно Лоренцом и в более общей формулировке Эйнштейном'', требует пересмотров законов механики, он привёл вывод новых уравнений движения. Эта работа завершала создание релятивистской механики.

В 1907 г. Эйнштейн закладывает первые основы общей теории относительности. Из общей теории относительности был получен ряд важных выводов:

1. Свойства пространства - времени зависят от движущейся материи.

2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.

3. Частота света в результате действия поля тяготения должна изменяться.

Общая теория относительности - ОТО - дала качественный скачок в развитии электродинамики, предложив уравнения Максвелла в гравитационных полях.

Некоторые соотношения релятивистской электродинамики мало исследованы, в результате чего проблемные вопросы физики пытаются объяснить, строя новую электродинамику, вводя новые физические поля - торсионные, монополь - магнитную частицу, имеющую один магнитный полюс, и т.д.

Максвелл вывел свои уравнения математически, исследуя модель магнитного поля в виде магнитных силовых линий, представляющих собой вихри, подобные смерчу, в эфире. Однако магнитное поле может представлять собой и другие, более или менее сложные движения, воздействующие на магнитную стрелку. Среда такого рода, наполненная молекулярными вихрями с параллельными осями, отличается от обычной жидкости тем, что она имеет различные давления в различных направлениях. Если бы она не сдерживалась надлежащим противодавлением, то она стремилась бы растянуться в экваторном направлении. "Среда, имеющая такого рода структуру, может быть способна к другим видам движения и смещения, чем те, которые обслуживают явления света и тепла; некоторые из них могут быть таковы, что они воспринимаются нашими чувствами при посредстве тех явлений, которые они производят". Современная физика обходится без эфира, заменив его физическим вакуумом, в котором постоянно возникают и исчезают электрон-позитронные и фотонные пары, появляются различного вида напряженности и моменты, обладающие энергией, передаются поперечные колебания - электромагнитные волны и т. д. Эйнштейн пишет: "Мы не можем в теоретической физике обойтись без эфира, т.е. континиума, наделенного физическими свойствами, ибо общая теория относительности исключает непосредственное дальнодействие; каждая же теория близкодействия предполагает наличие непрерывных полей, а, следовательно, существование эфира".

Математический формализм уравнений электродинамики не позволяет увидеть и предсказать ранее не известные явления без наличия модели. Моделью магнитного поля должна быть модель, подобная модели Максвелла, математическое исследование которой привело к созданию электродинамики.

Заключение

Если действительно, для того, чтобы гений реализовал свой творческий потенциал, он должен родиться в нужное время и в нужном месте, то судьба Майкла Фарадея полностью это подтверждает. В год его рождения (1791 г.) был опубликован трактат Гальвани, когда Фарадею исполнилось 8 лет, был создан Лондонский Королевский институт по распространению научных знаний. Годом позже в Лондонское Королевское общество - высший научный центр Великобритании - пришло сообщение об изобретении Вольта, когда Фарадею было 11 лет, его учитель Гемфри Деви доказал факт разложения воды с помощью вольтова столба и стал, таким образом, одним из основателей новой науки - электрохимии.

До Фарадея физика развивалась, но ее развитие шло по пути механистическому. Однако все открытия в области электричества и магнетизма предопределили научные идеи Фарадея, а затем математически их облекли в стройную теорию уравнениями Максвелла.

Влияние электрического тока на магнитную стрелку обнаружил датский физик Ханс Кристиан Эрстед. Во время лекции об электричестве и магнетизме он заметил, что магнитная стрелка компаса уклоняется от своего направления. После лекции он установил, что вблизи от полюса гальванического элемента.