Смекни!
smekni.com

Исследование работ Фарадея по электричеству (стр. 7 из 18)

В 1834 г. Фарадей в работе "Об электрохимическом разложении" предложил ввести новую терминологию. И на этот раз, как и все, что выходило из-под пера Фарадея, терминология была проста, научно обоснованна и понятна: Электролиты, ионы (путешественники), катионы (к отрицательному полюсу), катод (путь вниз), анод (путь вверх) и соответственно, анионы. Это был вклад в основу единого языка и международного сотрудничества. Справедливо говорил Бульвер-Литтон, английский писатель: "Гений творит то, что он должен, талант – то, что может".

Знаменитый опыт Фарадея с тороидальным сердечником из мягкого железа и двумя обмотками, соединенными одна через ключ с батареей, другая с гальванометром, известен всем со школьной скамьи.

Явление электромагнитной индукции воспринимали, как открытие нового вида электричества - "магнитоэлектричества". Фарадей решил окончательно доказать, что в природе не существует разных "электричеств". Для этого он получил восемь различных действий от пяти видов "электричества" (обыкновенного, гальванического, животного, термоэлектричества и магнитоэлектричества). Следующая серия исследований Фарадея была посвящена электрохимическим явлениям. Он предложил и ныне принятую терминологию: электролиз, электрод, катод, анод, анион, катион.

Электролиз (от электро... и греч. lysis - разложение, растворение, распад), совокупность процессов электрохимического окисления-восстановления на погруженных в электролит электродах при прохождении через него электрического тока. Электролиз лежит в основе электрохимического метода лабораторного и промышленного получения различных веществ - как простых (электролиз в узком смысле слова), так и сложных (электросинтез).

Изучение и применение электролиза началось в конце 18 - начале 19 вв., в период становления электрохимии. Для разработки теоретических основ электролиза большое значение имело установление М. Фарадеем в 1833-34 точных соотношений между количеством электричества, прошедшего при электролизе, и количеством вещества, выделившегося на электродах.

Промышленное применение электролиза стало возможным после появления в 70-х гг. 19 в. мощных генераторов постоянного тока.

Особенность электролиза - пространственное разделение процессов окисления и восстановления: электрохимическое окисление происходит на аноде, восстановление - на катоде. электролиз осуществляется в специальных аппаратах - электролизёрах.

Электролиз происходит за счёт подводимой энергии постоянного тока и энергии, выделяющейся при химических превращениях на электродах. Энергия при электролизе расходуется на повышение гиббсовой энергии системы в процессе образования целевых продуктов и частично рассеивается в виде теплоты при преодолении сопротивлений в электролизёре и в других участках электрической цепи.

На катоде в результате электролиза происходит восстановление ионов или молекул электролита с образованием новых продуктов. Катионы принимают электроны и превращаются в ионы более низкой степени окисления или в атомы, например при восстановлении ионов железа (F3+ +e = Fe2+), электроосаждении меди (Cu2+ + 2e = Cu). Нейтральные молекулы могут участвовать в превращениях на катоде непосредственно или реагировать с промежуточными продуктами катодного процесса. На аноде в результате электролиза происходит окисление ионов или молекул, находящихся в электролите или принадлежащих материалу анода (анод растворяется или окисляется), например: выделение кислорода (4OH- = 4e + 2H2O + O2) и хлора (2C1- =2e + Cl2), образование хромата (Cr3+ + 3OH- + H2O = CrO42- + 5H+ + 3e), растворение меди (Cu = Cu2+ + 2e), оксидирование алюминия (2Al + 3H2O = Al2O3 +6Н+ + 6e).

Электрохимическая реакция получения того или иного вещества (в атомарном, молекулярном или ионном состоянии) связана с переносом от электрода в электролит (или обратно) одного или нескольких зарядов в соответствии с уравнением химической реакции. В последнем случае такой процесс осуществляется, как правило, в виде последовательности элементарных одноэлектронных реакций, то есть постадийно, с образованием промежуточных ионов или радикальных частиц на электроде, часто остающихся на нём в адсорбированном состоянии.

Скорости электродных реакций зависят от состава и концентрации электролита, от материала электрода, электродного потенциала, температуры и ряда других факторов. Скорость каждой электродной реакции определяется скоростью переноса электрических зарядов через единицу поверхности электрода в единицу времени; мерой скорости, следовательно, служит плотность тока.

Были установлены соотношения между весами различных веществ, выделяемых на электродах при пропускании одного и того же количества электричества, связь между химическими и электрохимическими эквивалентами. При этом Фарадей пришел к выводу о необходимости ввести понятие "абсолютного количества электричества" - заряда грамм-атома одновалентного вещества, названного потом "числом Фарадея".

Количественные законы электролиза, открытые М. Фарадеем (1833 – 34) выражают связь между количеством прошедшего через электролит электричества, массой и химической природой (через эквиваленты химические) веществ, претерпевших превращение на электродах,

1-й закон.: массы т превращенных веществ пропорциональны количеству электричества q, прошедшего через электролит,

2-й закон.: массы различных веществ, превращенных в результате прохождения через электролит одного и того же количества электричества, пропорциональны химическим эквивалентам А этих веществ.

Из второго закона Фарадея следует, что для выделения электрическим током 1 г-экв. различных веществ необходимо одно и то же количество электричества, называемое Фарадея числом F. Математически законы Фарадея можно записать в виде одного уравнения т = (A/F) q = kq (коэффициент k = A/F называется электрохимическим эквивалентом).

Оба закона Фарадея абсолютно точны, если ионами электролита переносится всё прошедшее через него количество электричества. Наблюдаемые в некоторых случаях отклонения от этих законов могут быть связаны с неучтенными побочными электрохимическими реакциями (например, выделение газообразного водорода при электроосаждении некоторых металлов) или с частичной электронной проводимостью (например, при электролизе некоторых расплавов).

Не будучи сторонником теории о существовании неделимых атомов, он открыл путь к введению понятия атома электричества (заряда электрона) и, таким образом, к мысли о сложности строения самого атома. Величина заряда электрона определяется, как известно, делением числа Фарадея на число Авогадро.

1.3 Исследование положений М.Фарадея о существовании электрического и магнитного полей

В 1838 году Фарадей провел серию разнообразных опытов с газовыми разрядами различных типов и, в частности, обнаружил необъяснимое в то время "темное пространство" (названное его именем), свидетельствующее об отсутствии симметрии в поведении положительных и отрицательных носителей разрядного тока.

С 1839 года силы Фарадея пришли в упадок. Как показал проведенный в последствии анализ симптомов болезни ученого, это было ртутное отравление (Фарадей постоянно пользовался ртутными контактами). Но могло сказаться и переутомление от чрезвычайно напряженной умственной работы. В 1845 году, когда самочувствие его улучшилось, он осуществил давно задуманный опыт по выявлению связи света и магнетизма и обнаружил вращение плоскости поляризованного света в магнитном поле.

К началу 1850 г.г. Фарадей сконцентрировал внимание на магнитных явлениях, достиг важных результатов, как в экспериментах, так и в развитии своих теоретических воззрений.

В эпохальных опытах Гальвани, Эрстеда, Фарадея и др. открытые ими явления были неожиданными, непредсказуемыми, трудно поддававшимися объяснению. В конце концов, их открытия привели к осмыслению новой картины мира, а практически - к совершенно новым видам связи, новой энергетике, новому образу жизни.

При этом главную роль в теоретическом осмыслении нового круга явлений сыграл именно Фарадей. Он не был в плену общепринятых механистических концепций и опирался на наблюдения, опыты, интуицию и упомянутую уже идею о взаимосвязи и взаимопревращаемости сил природы.

Фарадей категорически отвергал мнение о мгновенном дальнодействии. Ключевое слово для него - индукция. И не только в трактовке опытов, но и в стиле их проведения. Его интересовал механизм действия сил в разных средах, электрические и магнитные процессы, происходящие как в веществе, так и в пространстве. Им было введено понятие диэлектрика, диэлектрической проницаемости, которую он называл удельной индуктивной способностью, открыт диамагнетизм, как универсальное свойство материи, в парамагнетике подавляемое. В то время существовала гипотеза об эфире, помогающая понять поперечность световых волн, как механических колебаний. Фарадей ею не пользуется. Он совершает смелый шаг, утверждая самостоятельное существование электрических и магнитных силовых линий, предвосхищая этим идею существования поля, как физической реальности.

Подвиг Фарадея состоит в том, что он завершил накопление экспериментальных открытий в области электромагнетизма и положил начало их теоретическому осмыслению, завершенному Максвеллом. Наглядность перестала быть обязательной для объяснения физических явлений.

Мысль об объяснении световых явлений с помощью колебаний электрических и магнитных сил, распространяющихся с конечной скоростью, возникла у него еще в 1832 году, когда он оставил в Лондонском Королевском обществе описание своей гипотезы в запечатанном пакете, но хотел закрепить свой приоритет. Пакет был вскрыт только через сто с лишним лет, в 1938 году, через пол века после того, как Генрих Герц окончательно доказал существование электромагнитных (в том числе световых) волн.