Смекни!
smekni.com

Основная задача механики (стр. 2 из 3)

atm=R3

=15*3,4t=51t

anm=R3

23=15*(3,4t+0,3)2=15*(3,4(t+0,08)2

a=

Решение второй задачи механики

Дано:

m=4.5 кг; V0=24 м/с;

R=0.5V H;

t1=3 c;

f=0.2;

Q=9 H; Fx=3sin(2t) H.

Определить: x = f(t) – закон движения груза на участке ВС

Решение:

1) Рассмотрим движение на промежутке АВ

учитывая, что R=0.5VH;


Разделяем переменные и интегрируем

2) Рассмотрим движение на промежутке ВС (V0=VB)


Дано:

m=36 кг

R=6 см=0,06 м

H=42 см=0,42 м

yC=1 см=0,01 м

zС=25 см=0,25 м

АВ=52 см=0,52

М=0,8 Н·м

t1=5 с

Найти реакции в опорах А и В.

Решение

Для решения задачи используем систему уравнений, вытекающую из принципа Даламбера:

(1)

Для определения углового ускорения ε из последнего уравнения системы (1) найдем момент инерции тела относительно оси вращения z по формуле

, (2)

где Jz1− момент инерции тела относительно центральной оси Сz1, параллельной оси z; d – расстояние между осями z и z1.

Воспользуемся формулой

, (3)

где α, b, g - углы, составленные осью z1 с осями x, h, z соответственно.

Так как α=90º, то

. (4)

Определим моменты инерции тела

,
как однородного сплошного цилиндра относительно двух осей симметрии h, z

;

.

Вычисляем

;

.

Определяем угол g из соотношения

;

;

.

Угол b равен

;

.

По формуле (4), вычисляем

.

Момент инерции тела относительно оси вращения z вычисляем по формуле (2):

,

где d=yC;

.

Из последнего уравнения системы (1)


;

.

Угловая скорость при равноускоренном вращении тела

,

поэтому при ω0=0 и t=t1=5 c

.

Для определения реакций опор следует определить центробежные моменты инерции

и
тела.
, так как ось х, перпендикулярная плоскости материальной симметрии тела, является главной осью инерции в точке А.

Центробежный момент инерции тела

определим по формуле

,

где

, т.е.

.

Тогда

.

Подставляя известные величины в систему уравнений (1), получаем следующие равенства

Отсюда

Ответ:

,
,
,
.

Определение скорости и ускорения точки по заданным уравнениям ее движения

Задание: по заданным уравнениям движения точки М установить вид ее траектории и для момента времени t = t1 (с) найти положение точки на траектории, ее скорость, касательное и нормальное ускорения, а также радиус кривизны траектории.

Исходные данные:

x=5cos(pt2/3); y= -5sin(pt2/3); (1)

t1=1 (x и y – в см, t и t1 – в с).

Решение:

Уравнения движения (1) можно рассматривать как параметрические уравнения траектории точки. Получим уравнения траектории в координатной форме.

x2 + y2 = (5cos(pt2/3))2 + (-5sin(pt2/3))2;

Получаем x2 + y2 = 25, т. е. траекторией точки является окружность, показанная на рис. 1.

Вектор скорости точки

(2)

Вектор ускорения точки

Здесь Vx , Vy , ax, ay – проекции скорости и ускорения точки на соответствующие оси координат.

Найдем их, дифференцируя по времени уравнения движения (1)

(3)

По найденным проекциям определяем модуль скорости:

V=Ö(Vx2 + Vy2); (4)

и модуль ускорения точки:

а =

Ö(ах2у2). (5)

Модуль касательного ускорения точки

аt=|dV/dt|, (6)

аt= |(Vxax+Vyay)/V| (6’)

Знак “+” при dV/dt означает, что движение точки ускоренное, знак “ - “ - что движение замедленное.

Модуль нормального ускорения точки

ап= V2/p; (7)

p – радиус кривизны траектории.

Модуль нормального ускорения точки можно найти и следующим образом:

an =

Ö(а2 -at2); (8)

После того как найдено нормальное ускорение по формуле (8), радиус кривизны траектории в рассматриваемой точке определяется из выражения:

p=V2/ an. (9)

Результаты вычислений по формулам (3)-(6), (8), (9) для момента времени t1=1с приведены ниже в таблице

Координаты

см

Скорость

см/с

Ускорение, см/с2

Радиус

см

х у Vx Vy V ax ay a at an p
2.5 -2.5Ö3 -5p/Ö3 -5p/3 10p/3 -20.04 13.76 24.3 10.5 21.9 5

Ниже на рисунке показано положение точки М в заданный момент времени.


Дополнительное задание:

z=1.5tx=5cos(pt2/3); y= -5sin(pt2/3); t1=1 (x и y – в см, t и t1 – в с).

Найдем скорости и ускорения дифференцируя по времени уравнения движения


По найденным проекциям определяем модуль скорости:

V=Ö(Vx2 + Vy2+Vz2);