Смекни!
smekni.com

Проектирование адиабатной выпарной установки термического обессоливания воды (стр. 15 из 21)

напряжение на шинах высшего напряжения – 6 кВ;

напряжение на шинах низшего напряжения – 0,4 кВ;

номинальные потери холостого хода DРх.х.=510 Вт;

номинальные потери короткого замыкания DРк.з.=3,1 кВт;

uк =4,5 %;

i0=2,4 %.

4.3.1.11 Потери в трансформаторе принимаем согласно (4.29) и (4.30)

т=0,02´Sном=0,02´160=3,2 кВт;

DQт=0,1´Sном=0,1´160=16квар.

4.3.1.12 Всего на стороне высшего напряжения имеем

РSВНSНН+DРт=108,5+3,2=111,7 кВт;

QSВН=QSНН+DQт=8+16=24 квар.


4.3.1.13 Полная мощность на стороне высшего напряжения трансформатора SВНт

4.3.1.14 Средневзвешенный коэффициент мощности cosj

сosj=РSВН/SВНт=111,7/114,3=0,98.

4.3.2 Расчётные нагрузки высоковольтного оборудования

4.3.2.1 Принимая коэффициент использования мощности одинаковым для всех электродвигателей находим активную расчётную мощность Рд.расчв по формуле (4.19) [10]

Рд.расчв=Ки´SРном=0,8´(450´3+500+200+400)=1960 кВт,

где SРном – сумма номинальных мощностей двигателей по таблице 7;

Ки=0,8 – коэффициент использования по таблице 4.6 [10].

4.3.2.2 Реактивная мощность составляет Qд.расч.в

Qд.расч.в=tgj´Рд.расч.в=0,75´1960=1470 квар,

где tgj=0,75 – определяется по таблице 4.6 [10].

4.3.3 Суммарная активная мощность на шинах 6 кВ составляет РS

РSSВНд.расч.в=111,7+1960=2071,7 кВт.

4.3.4 Суммарная реактивная мощность на шинах 6 кВ составляет QS

QS= QSВН+Qд.расч.=24+1470=1494 квар.

4.3.5 Устанавливаем на шинах высшего напряжения компенсирующее устройство УКА 56-6,3-1350 УЗ (У1) мощностью Qкк=1350 квар (номинальное напряжение 6,3 кВ).

4.3.6 С учётом компенсирующего устройства величина реактивной мощности на шинах 6 кВ составляет QSк

QSк=QS-Qкк=1464-1350=144 квар.


4.3.7 Полная мощность на шинах 6 кВ составляет S


4.4 Выбор коммутирующей аппаратуры и сечения кабелей

4.4.1 Распределительный шкаф 6 кВ подключается к цеховым шинам алюминиевым кабелем, проложенным в земле

4.4.1.1 Расчётный ток в линии от шин 6 кВ до РШ определяется по величине полной мощности на шинах 6 кВ Iр1


4.4.1.2 По таблице 5-16 [10] выбираем для алюминиевого кабеля в бумажной пропитанной изоляции экономическую плотность тока jэк=1,2 А/мм2

4.4.1.3 Тогда экономическое сечение жилы кабеля sэк

sэк=Iр1/jэк=200/1,2=167 мм2.

4.4.1.4 Выбираем по таблице 2-22 [26] кабель с алюминиевыми жилами марки ААШВ-6 с сечением жилы s=185 мм2 и длительно допустимым током Iд.д.1=340 А.

4.4.2 Трансформатор мощности подключён к распределительному щиту 6 кВ кабелем с алюминиевыми жилами, проложенным по воздуху

4.4.2.1 Расчётный ток в линии от РШ 6 кВ до трансформатора определяется по величине мощности на шинах высшего напряжения трансформатора Iр2


4.4.2.2 По таблице 5-9 [10] выбираем для алюминиевого кабеля с бумажной изоляцией экономическую плотность тока jэк=1,2 А/мм2

4.4.2.3 Тогда экономическое сечение жилы кабеля sэк

sэк=Iр2/jэк=11/1,2=9,1 мм2.

4.4.2.4 Выбираем по таблице 2-22 [26] кабель с алюминиевыми жилами марки ААШВ-6 с сечением жилы s=10 мм2 и длительно допустимым током Iд.д.2=60 А.

4.4.3 Распределительный шит 0,4 кВ подсоединён к трансформатору алюминиевыми проводами с резиновой изоляцией, проложенными в трубе

4.4.3.1 Расчётный ток в проводах Iр3 находим по величине полной мощности на стороне низшего напряжения трансформатора


4.4.3.2 Для алюминиевых проводов с резиновой изоляцией экономическая плотность тока составляет по таблице 5-16 [10] jэк=1,2 А/мм2.

4.4.3.3 Экономическое сечение провода составляет sэк

sэк=Iр3/jэк=157/1,2=131 мм2

4.4.3.4 Выбираем по таблице 2-17 [26] алюминиевый провод марки АПР с сечением жилы s=120 мм2 и длительно допустимым током Iд.д.2=220 А.

4.4.4 Принимая, что двигатели подключены к РШ 0,4 кВ алюминиевыми проводами в резиновой изоляции проложенными в одной трубе, выберем сечение проводов для двигателя Рном=45 кВт

4.4.4.1 Расчётный ток в проводах Iр.д. найдём по номинальным характеристикам двигателя


4.4.4.2 Экономическая плотность тока по таблице 5-16 [10] jэк=1,2А/мм2.

4.4.4.3 Экономическое сечение провода sэк

sэк=Iр.д./jэк=82,6/1,2=68,8 мм2.

4.4.4.4 По таблице 2-17 [26] выбираем алюминиевый провод с резиновой изоляцией марки АПР сечением жилы s=70 мм2 и длительно допустимым током Iд.д.=165 А.

4.4.5 По расчётному току в проводниках выбираем отключающую аппаратуру

4.4.5.1 По расчётному току в кабельной линии 6 кВ, соединяющей внутрицеховые шины с РШ проектируемой установки, Iр1=200 А выбираем высоковольтный выключатель марки ВМП 10 (таблица на стр. 222 [25]) номинальным током Iном=1000 А.

4.4.5.2 Двигатели 6 кВ подключаются непосредственно к РШ марки К-2-АЭ, в котором устанавливаются вакуумные выключатели типа BB/TEL со следующими характеристиками:

номинальный ток – 630 А;

номинальный ток отключения выключателя – 12,5 кА;

номинальный ток термической стойкости (0,3 с.) - 12,5 кА.

В дальнейших расчётах оборудование и токопроводы высоковольтного оборудования не рассматриваются.

4.4.5.3 Трансформатор подключён к РШ 6 кВ через выключатель нагрузки типа ВНП-17 с предохранителями, которые выбираются номинальному току Iр2=11 А. Выбираем предохранители типа ПК-6 номинальным током 80 А.

4.4.5.4 По расчётному току на стороне низшего напряжения трансформатора Iр3=157 А подбираем автоматический выключатель типа АВМ-4С номинальным током Iном=400 А.

4.4.5.5 По длительному току в линии электродвигателя Iр.д.=82,6 А, выбираем автоматический выключатель типа А-3710Б на 160 А, ток мгновенного срабатывания 400 А, ток расцепителя 100 А.

4.4.5.6 Выбор аппаратуры для остального оборудования в работе не рассматривается.

4.5 Расчёт токов короткого замыкания

4.5.1 Принимаем сопротивление системы хс=0,173 Ом.

4.5.2 Найдём сопротивление кабельной линии, соединяющей внутрицеховые шины 6 кВ с РШ проектируемой установки, предполагая её длину l1=50 м

4.5.2.1 Активное сопротивление линии составляет r1

r1=ro´l1=0,169´0,05=0,0085 Ом,

где rо=0,169 Ом/км – удельное активное сопротивление кабеля сечением жилы 185 мм2 по таблице 2-65 [26].

4.5.2.2 Реактивное сопротивление линии х1

х1о´l1=0,08´0,05=0,004 Ом,

где хо=0,08 Ом/км – удельное реактивное сопротивление кабеля с алюминиевыми жилами согласно [10] на стр. 70.

4.5.3 Суммарное реактивное сопротивление в конце линии хS1 находится с учётом сопротивления системы

хS11с=0,004+0,173=0,177 Ом.

4.5.4 Результирующее сопротивление линии z1


4.5.5 Ток короткого замыкания в конце участка составляет Iк.з.1

4.5.6 По отношению хS1/r1=0,177/0,0085=20 находим по номограмме на рис. 3.2 [10] ударный коэффициент kу=1,9.


4.5.7 Ударный ток в конце линии составляет Iуд.1 по формуле (3.8) [10]

Iуд.1=Ö2´kу´Iк.з.1=Ö2´1,9´19550=52530 А.

4.5.8 Сопротивление кабельной линии, соединяющей РШ и трансформатор находим аналогично, принимая длину линии l2=30 м

4.5.8.1 Активное сопротивление линии составляет r2

r2=ro´l2=3,12´0,03=0,0936 Ом,

где rо=3,12 Ом/км – удельное активное сопротивление кабеля сечением жилы 10 мм2 по таблице 2-65 [26].

4.5.8.2 Реактивное сопротивление линии х2

х2о´l2=0,08´0,03=0,0024 Ом,

где хо=0,08 Ом/км – удельное реактивное сопротивление кабеля с алюминиевыми жилами согласно [10] на стр. 70.

4.5.9 Суммарное активное сопротивление rS2

rS2=r1+r2=0,0085+0,0936=0,1021 Ом.

4.5.10 Суммарное реактивное сопротивление в конце линии хS2

хS2S12=0,177+0,0024=0,1794 Ом.

4.5.11 Результирующее сопротивление линии z2


4.5.12 Ток короткого замыкания в конце участка составляет Iк.з.2


4.5.13 По отношению хS2/rS2 =0,1794/0,1021=1,76 находим по номограмме на рис. 3.2 [10] ударный коэффициент kу=1,16.

4.5.14 Ударный ток в конце линии составляет Iуд.2 по формуле (3.8) [10]

Iуд.2=Ö2´kу´Iк.з.2=Ö2´1,16´16780=27527 А.


4.5.15 Найдём сопротивление трансформатора по его номинальным характеристикам

4.5.15.1 Активное сопротивление трансформатора в относительных единицах r по формуле (3.20) [10]