Смекни!
smekni.com

Склокерамічні матеріали на основі компонента з фазовим переходом метал-напівпровідник (стр. 2 из 11)

Наукова новизна отриманих результатів. До найбільш суттєвих оригінальних результатів, що виносяться на захист, та отримані вперше особисто дисертантом, відносяться:

1. Розроблено наукові засади технології одержання склокерамічних матеріалів на основі компонента з фазовим переходом метал-напівпровідник – діоксиду ванадію і оптимізовано режими синтезу таких матеріалів.

2. Встановлено закономірності формування фазового складу і мікроструктури склокераміки в системах VO2-ВФС, VO2-ВФС-SnO2, VO2-ВФС -Cu, VO2-ВФС-Cu-SnO2, VO2-ВФС-Zn-SnO2, VO2-ВФС-Cu-TiO2 і VO2-ВФС -Cu-ZnO. Показана можливість цілеспрямованих змін фазового складу і мікроструктури кераміки на базі VO2 і ВФС шляхом її модифікування добавками металів та оксидів.

3. Встановлено закономірності впливу мікроструктури, добавок металів та оксидів на питому електропровідність s і величину її стрибка в межах температури Tt~341 K в кераміці на базі VO2 та ВФС. Показано, що стрибок s, обумовлений ФПМН у VO2, складає не менше 102 для склокераміки систем VO2-ВФС, VO2-ВФС-SnO2, VO2-ВФС-Cu і VO2-ВФС-Cu-SnO2 при вмісті міді не більше 5 ваг. % і зникає, коли її вміст перевищує 10 ваг. % або склад склокераміки модифіковано добавками TiO2, ZnO і Zn.

4. Розроблено модель електропровідності склокерамічних матеріалів на основі компонента з фазовим переходом метал-напівпровідник, згідно якій такі матеріали мають стрибок електропровідності в межах температури переходу, якщо в них при синтезі сформовано нескінченний кластер с протіканням крізь кристаліти компонента з ФПМН. Показано, що провідну роль для формування такого кластеру в склокераміці на основі VO2 грають провідникові містки між кристалітами VO2, які виникають в процесі синтезу за рахунок зростання кристалітів VO2, легування скла міддю і кристалізації фази V5O9.

5. Відкрито два нових явища, які зв’язані з фазовим переходом метал-напівпровідник - гістерезис і розмірний ефект ВАХ. Ці явища спостерігаються у зразку матеріалу з ФПМН після перемикання у стан з низьким опором, коли в ньому співіснують як металева фаза в шнурі струму, так і напівпровідникова за його межами. Гістерезис спостерігається як незбіг гілок ВАХ, виміряних в циклі збільшення-зменшення струму, і є наслідком температурного гістерезису ФПМН, який веде до встановлення різних рівновагових температур на межі шнура металевої фази при збільшенні і зменшенні струму. Розмірний ефект полягає в зміні знаку диференційного опору ВАХ від негативного до позитивного при збільшенні струму і є наслідком обмеження розширення шнура металевої фази розмірами зразка. В межах електротермічної моделі отримано аналітичний вираз для ВАХ, який адекватно описує гістерезис і розмірний ефект.

6. Встановлено закономірності впливу термоциклювання через температуру ФПМН на електропровідність і ВАХ кераміки на базі VO2 та ВФС. Доведено, що причиною деградації склокераміки при термоциклюванні, яка полягає в незворотному зменшенні електропровідності та її стрибка при ФПМН, є механічні напруження, що виникають на межі металевої і напівпровідникової фаз і внаслідок малої пластичності кристалів VO2 і ВФС ведуть до утворення мікротріщин, котрі розривають електричні зв’язки в нескінченному кластері з протіканням крізь кристаліти VO2. Встановлено, що модифікування склокераміки міддю і SnO2 дозволяє подолати деградацію при термоциклюванні.

7. Вперше в рамках підходу, який базується на теорії протікання, уявленнях про енергію пружної деформації, викликаної ФПМН, та енергію формування мікротріщини розроблено модель деградації склокераміки на основі VO2. В межах моделі обгрунтовано значне зменшення деградації при модифікуванні склокераміки міддю і SnO2 і визначені рекомендації з подолання деградації при термоциклюванні шляхами зменшення розмірів кристалітів VO2 і їх об’ємної долі, а також створення розвиненої сітки електричних зв’язків між кристалітами VO2 за рахунок модифікування складу склокераміки добавками металів.

Практичне значення отриманих результатів.

1. Розроблено новий спосіб виготовлення VO2 шляхом відновлення V2O5 вуглецем, який дозволяє отримати VO2 зі стрибком електропровідності при ФПМН близько 103, відрізняється від відомих способів невеликими часовими затратами і може бути легко адаптований до промислового виробництва.

2. Розроблено спосіб виготовлення кераміки на базі VO2 і ВФС, а також її складів, модифікованих добавками металів і оксидів.

3. Розроблено нову методику визначення за даними ДТА вмісту VO2 в гетерогенних матеріалах з відносною похибкою не більше ± 5% при вмісті VO2 від 20 до 100 ваг. % і ± 10% при вмісті VO2 від 1 до 10 ваг. %.

4. В системі VO2-ВФС-Cu-SnO2 одержано об’ємні склокерамічні матеріали, які здатні працювати при струмі до десятка ампер, не проявляють суттєвої деградації електрофізичних параметрів після 104 термоциклів через температуру ФПМН і можуть служити основою для створення порогових перемикачів та критичних терморезисторів зі стрибком опору близько 102 в межах температури 343 K. Розроблено схеми та рекомендації з вибору оптимальних параметрів таких терморезисторів для ефективного захисту процесора комп’ютера від перегріву і освітлювальних ламп розжарювання від струму увімкнення.

Достовірність. Основні положення і висновки дисертації базуються на значному експериментальному матеріалі, одержаному із застосуванням комплексу взаємодоповнюючих, апробованих сучасних методів дослідження, широкому колі складів склокерамічних матеріалів на основі VO2, які досліджувались, відтворюванні і статистичній обробці результатів вимірів, співставленні результатів моделювання і розрахунку з експериментальними даними, а також на порівнянні результатів, отриманих в роботі, з даними інших дослідників.

Сукупність отриманих в роботі даних і розвинутих моделей складає основу для розвитку нового, перспективного напрямку фізики твердого тіла, а саме: розробка наукових засад синтезу та модифікування нового класу матеріалів – склокераміки на основі компонента з фазовим переходом метал-напівпровідник.

Особистий внесок здобувача. Експериментальні і теоретичні дослідження за темою дисертації, написання наукових статей, патентів, підготовка доповідей та їх тез виконані автором особисто або за його безпосередньою участю. Авторові особисто належать основні ідеї, покладені в основу дисертації, загальна постановка задачі, розробка та реалізація способів одержання об’єктів та методів їх досліджень, аналіз та інтерпретація результатів, розробка теоретичних моделей, формулювання наукових положень та висновків. Зокрема автором персонально: - з’ясовано механізм електрокристалізації VO2 в розплавах V2O5 і ванадієво-фосфатних стекол і побудовано модель цього явища [1, 5, 8, 29]; - методом ДТА досліджені ВФС різних складів після їх кристалізації і побудована фазова діаграма системи V2O5-b-VOPO4 [2-4]; - запропоновано механізм розчинення VO2 в розплавах V2O5 і ВФС та побудована модель цього процесу [6]; - запропоновано способи синтезу VO2 шляхом відновлення V2O5 вуглецем [18, 27] та одержання склокераміки на базі VO2 і ВФС [7, 28, 30], розроблено методику визначення вмісту VO2 в гетерогенних матеріалах [19]; - на підставі даних рентгенофазового аналізу, СЕМ та рентгенівського мікроаналізу запропоновано механізм формування мікроструктури і фазового складу склокераміки на основі VO2 при синтезі [24]; - досліджені температурні залежності електропровідності склокераміки різних складів і побудовано моделі для опису електропровідності [11, 13, 15, 16, 23, 33, 37]; - досліджені ВАХ склокераміки на основі компонента з ФПМН і виконано їх теоретичний опис [14, 34]; - відкриті явища гістерезису і розмірного ефекту ВАХ і запропоновано механізми цих явищ [20, 26, 36]; - виконані дослідження впливу термоциклювання на електропровідність та ВАХ склокераміки на базі VO2 і ВФС, з’ясовано механізм такого впливу, запропоновано модель деградації склокераміки і шляхи боротьби з нею [9, 10, 12, 22, 31, 35]; - досліджені можливості практичного використання склокерамічних матеріалів на основі VO2 для захисту процесора комп’ютера від перегріву і освітлювальних ламп розжарювання від струму увімкнення [21, 25, 38].

Апробація результатів дисертації. Основні результати дисертації доповідались і обговорювались на: VII-ойВсесоюзной конференции по стеклообразному состоянию (Ленинград, 1981); Всесоюзной конференции „Новые электронные приборы и устройства” (Москва, 1982); Всесоюзной конференции „Физические основы надежности и деградации полупроводниковых приборов” (Кишинев, 1982); Всесоюзной конференции „Новые процессы и оборудование для получения веществ реактивной квалификации” (Днепропетровск, 1982); I-ой Всесоюзной конференции по электрохимии (Москва, 1982); XNationalScientificandTechnicalConferencewithinternationalparticipation „Glassandfineceramics” (Varna, Bulgaria, 1990); InternationalConferenceonElectronicCeramics & Applications (Aveiro, Portugal, 1996); InternationalConferenceoftheEuropeanCeramicSociety „EuroCeramicsVI” (Brighton, UK, 1999); XIII-ой научно-технической конференции „Датчики и преобразователи информации систем измерения, контроля и управления «Датчик-2001»” (Судак, 2001); 1-й Українській науковій конференції з фізики напівпровідників УНКФН-1 (Одеса, 2002); IV-й Міжнародній школі-конференції “Актуальні проблеми фізики напівпровідників” (Дрогобич, 2003); V-й Міжнародній школі-конференції “Актуальні проблеми фізики напівпровідників” (Дрогобич, 2005); Всеукраїнському з’їзді „Фізика в Україні” (Одеса, 2005); 2-й Міжнародній науково-технічній конференції „Сенсорна електроніка та мікросистемні технології” (Одеса, 2006); I-й Міжнародній науково-практичній конференції „Електромагнітна сумісність на залізничному транспорті” (Дніпропетровськ, 2007).