Смекни!
smekni.com

Операторный метод расчета переходных процессов в линейных цепях (стр. 1 из 2)

Реферат

по курсу общая электротехника и электроника

На тему:

«Операторный метод расчета переходных процессов в линейных цепях»


Содержание

Введение

1. Применение преобразования Лапласа и его свойств к расчету переходных процессов

2. Переход от изображения к оригиналу. Формулы разложения

3. Законы цепей в операторной форме

4. Эквивалентные операторные схемы замещения

Список литературы

Введение

Электротехника - это наука о техническом (т.е. прикладном) использовании электрических и магнитных явлений. Большое значение электротехники заключается в том, что средствами электротехники

- эффективно получают и передают электроэнергию;

- решают вопросы

· передачи и преобразования сигналов и информации: звук человеческой речи преобразуют в электромагнитные колебания (телефон, радио);

· хранения информации (телеграф, радио, магнитная запись);

- выполняют математические операции: вычислительные машины с огромной скоростью выполняют любые математические операции, в том числе и решение сложных уравнений.

Теоретические основы электротехники заложены физикой (учением об электричестве и магнетизме) и математикой (методами описания и анализа электромагнитных явлений). Наряду с этом развитие электротехники привело к ряду новых физических понятий, новых формулировок физических законов, к развитию специальных математических методов, связанных с описанием и анализом типичных явлений, протекающих именно в электротехнических устройствах.

1 Применение преобразования Лапласа и его свойств к расчету переходных процессов

Этот метод основан на преобразовании Лапласа. Пусть f(t) – оригинал, а F(p) – изображение этого оригинала по Лапласу. Для сокращения применяют такие обозначения: f(t)

F(p), F(p)=

Прямое преобразование Лапласа определяется интегралом:

,

Для большого числа функций составлена таблица соответствия изображения и оригинала, кроме того, знание свойств преобразований Лапласа позволяет по небольшому числу выученных изображений находить широкий класс изображений функций.

Основными свойствами являются:

1. Свойство линейности

=
,
,

2.

,

3.

.

Последними двумя свойствами очень удобно решать дифференциальные уравнения.

Смещение аргумента:

-

,

-

.

Свертка:

-

.

Предельные соотношения

Они позволяют не находя всего оригинала по изображению найти значение оригинала при t=0 и t→ ∞.

и
.

Если известно изображение, то можно перейти к оригиналу одним из трех способов:

1) взять обратное преобразование;

2) взять таблицу;

3) воспользоваться формулами разложения.

Изображение стандартных функций:

1) Ступенчатое воздействие

,

.

2) Дельта-импульс

,

.

Если ступенчатая функция и δ-импульс заданы в момент t1 , используя теорему смещения, получают:

,

.

3)

Пусть α=jω, тогда:

,

с другой стороны по формулам Эйлера:

,
.

Изображение синусоиды с нулевой начальной фазой:

,

.

2 Переход от изображения к оригиналу. Формулы разложения

Эти формулы позволяют найти оригинал, если изображение задано дробно-рациональной функцией:

Собственно формулу разложения можно применять только в том случае, когда высшая степень знаменателя выше высшей степени числителя. Если это не так, то сначала нужно поделить числитель на знаменатель, что и позволит привести F(p) к требуемому виду.

Пример:

,

.

Если m<n, то изображение записывают в виде:

.

Характеристическое уравнение – выражение F2(p)=0 и, в зависимости от корней в оригинале, появляются соответствующего вида слагаемые, каждое из которых соответствует простейшей дроби.

Чтобы не искать коэффициенты дробей из систем уравнений, пользуются формулами разложения. Они имеют вид:

1) Каждому простому корню характеристического уравнения

в оригинале, будет соответствовать слагаемое
, где
;

2) Среди корней есть пара комплексно сопряженных:

,
. Можно воспользоваться предыдущей формулой для каждого корня, но проверка показывает, что коэффициенты перед exp оказываются к.с.ч. и можно упростить процедуру, записывая ответ сразу для двух корней в виде:
, где
- корень с положительной мнимой частью.