Смекни!
smekni.com

Фізико-технологічні основи фотолітографії (стр. 3 из 7)

При центрифугуванні на краю підкладки завжди виникає стовщення (валик), ширина і висота якого залежать від в'язкості резиста, швидкості обертання центрифуги і форми підкладки (наприклад, на не круглих підкладках важко позбутися валика). Тут доречно підкреслити, що практично неможливо для фоторезисту будь-якої в'язкості підібрати такі швидкості обертання, щоб досягти необхідної товщини шару. Наприклад, спроба одержати товсті шари на резистах з малою в’язкістю, знижуючи швидкість обертання, приведе до різкого зростання ширини валика, тому прийдеться збільшити і в'язкість, і швидкість нанесення.

Рис.1.6. Способи нанесення фоторезистів: а - центрифугування; б - розпилення; в - електростатичне нанесення; г- занурення; д - нанесення хвилями; 1 - дозатор для подачі резиста; 2 - підкладка; 3 - столик центрифуги; 4 - привід;5 - двигун; 6 - тахометр; 7 - планшайба, що нагрівається; 8 - підкладка: 9 - форсунка подачі речиста; 10 - форсунка; 11 - кільце для зарядження резиста; 12 - підкладка; 13 – заземлена основа; 14 - підкладки: 15 - фільтроване стиснене повітря; 16 - ємність для збору резисту; 17 - підкладка; 18 - ведучий ролик; 19 - подача резиста; 20 - ролик нанесення.

У шарі, нанесеному на центрифузі, завжди є внутрішні напруження; щільність дефектів досить висока, зокрема, завдяки тому, що пил з навколишнього середовища засмоктується в центр обертового диска (диск є своєрідним відцентровим насосом). В даний час немає сталої думки про те, яке повинне бути прискорення центрифуги. З одного боку, вважається, що розгін повинен відбутись протягом мінімального часу, тобто повинна майже миттєво встановлюватися та швидкість, при якій формується шар необхідної товщини. Для досягнення цієї мети розроблені спеціальні конструкції центрифуг. З іншого боку, практичний досвід говорить про те, що повільний розгін або навіть двоступінчаста (спочатку повільна, потім швидка) зміна швидкості дозволяє одержувати набагато більш якісні шари резиста.

Крім центрифугування відомі такі методи нанесення фоторезистів як розпилення, електростатичне нанесення, занурення (купання), полив. Нанесення фоторезисту розпиленням (рис.1.6,б), дозволяє одержувати широкий інтервал товщини шарів, причому підкладка може мати неплоску поверхню. Фоторезист наноситься з пневматичного пістолета-розпилювача. Параметри шару залежать від тиску і температури повітря, відстань від сопла до підкладки, в'язкості резиста і концентрації сухого продукту, типу розчинника. При електростатичному нанесенні (рис.1.6,в) фоторезист диспергує або за допомогою форсунки, або саме електричне поле дробить рідину на дрібні краплі діаметром приблизно 10 мкм. Заряджені краплі прискорюються полем і осаджуються на підкладку. Електростатичне нанесення здійснити складніше, ніж просте розпилення, оскільки приходиться додатково враховувати електричні властивості резиста: питомий опір і діелектричні втрати. Основними труднощами при нанесенні резиста розпиленням є усунення пилу й інших забруднень, що притягуються електростатичним полем або струменем повітря.

Останнім часом особлива увага приділяється нанесенню фоторезистів поливом або зануренням (рис.1.6, г). Розробляються спеціальні фоторезисти, які непридатні для центрифугування, але які дають рівномірні шари при зануренні підкладки.

Використовується для нанесення резиста і метод нанесення хвилями. Установка конвеєрного типу (рис.1.6, д) забезпечує рівномірність товщини шару в межах ±5% і придатна для нанесення резиста на підкладки будь-якого типу: від друкованих плат до кремнієвих пластин. Основні причини інтересу до цих методів: мінімальна щільність дефектів у шарі, висока продуктивність, великі можливості автоматизації процесу [3,5].

Перше сушіння закінчує формування шару фоторезисту. При видаленні розчинника обсяг полімеру зменшується, шар прагне стиснутись, але жорстко скріплена з ним підкладка перешкоджає цьому. Виникаючі напруги і характер їхнього розподілу визначаються властивостями фоторезисту і режимами сушіння.

Роль першого сушіння звичайно недооцінюють, вважаючи, що на цій операції досить видалити розчинник. Що це далеко не так, особливо для позитивних резистів, можна переконатися, глянувши на рис.1.7, на якому приведена залежність від температури сушіння таких важливих параметрів, як час експонування і точність передачі розміру елемента після проявлення. Треба відзначити, що при першому сушінні коливання температури можуть досягати 10°С за рахунок недосконалості нагрівальних камер, помилок оператора, неправильної конструкції тримача підкладок. Особливо небезпечні перепади температури всередині камери і занадто швидке нагрівання.

Для сушіння використовують термостати. Використовують метод сушіння у надвисокочастотних (НВЧ) печах, для якого потрібні всього лише секунди. При НВЧ прогріві не тільки різко підвищується продуктивність, але й усувається небезпека «перегріву» фоторезисту. Поліпшується також якість проявлення: зображення з’являється миттєво після занурення в проявник.

Рис.1.7.Залежність часу експонування (1) і точності передачі розміру

елемента (2) від температури сушіння.

Експонування і проявлення нерозривно зв’язані між собою. У силу цього для вибору режимів, що забезпечують точну передачу розмірів, необхідно одночасно змінювати час прояву й експонування. На практиці, однак, часто користуються методом підбора оптимального значення одного параметра при фіксації іншого. З грубим наближенням знаходять часи експонування і проявлення, при яких виходить задовільна якість рельєфу. При роботі з позитивними резистами перевіряють щільність проколів в шарі резиста даної товщини, для чого на пластинку окисленого кремнію з відомою щільністю дефектів в окислі наносять шар резиста, висушують його і проявляють протягом часу, приблизно вдвічі більшого, ніж час, знайдений на початку проявлення.

Потім проводять друге сушіння і травлення і визначають, наскільки збільшилася щільність дефектів в окислі за рахунок проникнення травника крізь проколи в шарі резиста. При цьому передбачається, що ріст щільності дефектів викликаний тільки процесом проявлення; це припустимо, тому що проявлення дійсно є основною причиною збільшення щільності дефектів у шарах позитивних фоторезистів. Рекомендується для порівняння перевіряти щільність дефектів на непроявленому шарі. Якщо при максимальному часі проявлення щільність дефектів занадто велика, варто збільшити товщину шару або замінити фоторезист і знову повторити описані вище процедури.

Остаточно для будь-якого типу резистів знімають залежності точності передачі розмірів зображення від часу проявлення при фіксованому часі експонування і від часу експонування при фіксованому часі проявлення; у результаті знаходять оптимальні часи, що відповідають точності передачі, близької до одиниці. Підбираючи час експонування, варто ретельно стабілізувати інші фактори, що впливають на точність передачі розмірів зображення: коливання освітленості; неминучий зазор між фотошаблоном і резистом; підвищення температури шару, що іноді виникає при експонуванні.

Для контролю відносної освітленості застосовують люксметри. Рекомендується перевіряти рівномірність освітлення пластини в 20-30 точках. Це допоможе позбутися серйозних помилок, коли зміну розмірів зображення приписують зміні часу експонування, а на ділі воно викликано коливаннями освітленості на площині пластини.

За рахунок зазору між шаблоном і резистом виникає френелівська дифракція, яка особливо помітна при малих розмірах зображення. Для зменшення величини зазору звичайно застосовують вакуумний або пневматичний зажим шаблона.

Використання для експонування могутніх ртутних ламп іноді викликає нагрівання столика установки суміщення і самої підкладки із шаром фоторезисту. Це може привести до виникнення негативного зображення, особливо якщо експозиція підібрана невірно і є занадто великою. Наприклад, негативне зображення на шарі позитивного резиста утворюється під дією побічних реакцій, ініційованих нагріванням або переекспозицією, з утворенням продуктів, не розчинних в лужному проявнику.

Сучасні установки для експонування і суміщення являють собою складні оптико-механічні комплекси [11]. Метод суміщення, використовуваний в установках, може бути візуальним або фотоелектричним; від нього залежить точність, роздільна здатність і продуктивність процесу. Останнім часом створені фотоелектричні установки суміщення, точність яких у принципі може досягати ±0,1 мкм, але практично дорівнює ±0,85 мкм. Для роботи таких установок потрібні спеціальні опорні знаки: на шаблоні непрозорі штрихи, па підкладці витравлені канавки, ширина яких у 2-4 рази більше, ніж штриха. Попередньо проводиться за допомогою оптичного мікроскопа грубе суміщення, після чого включається фотоелектричний мікроскоп і точне суміщення здійснюється або вручну по показанню гальванометрів, або автоматично, якщо введено зворотній зв'язок на мікроманіпулятори столика.

Роздільна здатність або мінімальний розмір зображення при візуальному методі визначаються характеристиками мікроскопа установки. Як правило, застосовують мікроскопи зі збільшенням, змінюваним плавно або дискретно в межах від 40-80Х (огляд) до 100-400Х (точне суміщення); мінімальні розміри зображення близько 1 мкм.

Точність суміщення в установках залежить, у першу чергу, від принципу роботи і якості виконання мікроманіпуляторів. Найбільш точно працюють маніпулятори, що представляють собою подвійний спарений паралелограм із гвинтовим приводом. Маніпулятори здатні забезпечити точність переміщення ±0,1 мкм, але реальна точність візуального суміщення складає звичайно ±1 мкм і визначається багатьма факторами. Серед них варто вказати розмір і контрастність знаків суміщення, форму знаків, а також сталість цих параметрів у процесі технологічних обробок підкладки. Оптимальними можуть вважатися знаки, що утворюють при суміщенні штрих, вписаний між двома іншими штрихами. Конкретно, ширина штрихів може дорівнювати 3 мкм, довжина в 10 разів більше ширини, контрастність 0,3-0,4. Варто враховувати, що при окислюванні і травленні розміри знаків міняються. На точність суміщення впливають геометричні й оптичні властивості підкладок, а також суб’єктивні особливості оператора. Суміщення формально являє собою дискретний послідовний процес, здійснюваний у системі око - рука зі зворотнім зв’язком. Тільки гострота зору залежить від діаметра зіниці, адаптації ока, місця зображення на сітківці, спектрального складу випромінювання, яскравості фону і регіструючих об’єктів і т.д.