Смекни!
smekni.com

Фізико-технологічні основи фотолітографії (стр. 4 из 7)

Продуктивність установок в основному залежить від тривалості самого суміщення і швидкодії додаткових пристроїв завантаження-вивантаження підкладок. Робочий час сучасних установок складає 45-60 секунд для звичайних і 5-15 секунд для автоматичних. Максимальна продуктивність досягається на автоматичних системах, де застосований фотоелектричний метод суміщення, автоматичний дозатор енергії експонування; така система заміняє 8-15 операторів. Для них не потрібно забезпечення одночасної різкості зображення на шаблоні і підкладці, як при візуальному суміщенні, що є великим достоїнством фотоелектричних установок. З’являється можливість установити великий зазор при суміщенні і практично усунути зношення фотошаблонів. Цікавий варіант збільшення терміну служби фотошаблонів реалізується в установках з постійним зазором, що залишається і після суміщення, при експонуванні..

Проявлення негативних резистів є процесом видалення експонованих ділянок в органічному розчиннику [10]: толуолі, трихлоретилені і т.д. Для позитивних резистів проявлення - більш складна хімічна реакція і проведення її вимагає особливої старанності.

Для проявлення позитивних резистів використовують водні лужні розчини: (0,3-0,5) % розчин їдкого калію, (1-2)% розчин тринатрійфосфата, органічні луги - етаноламіни. В даний час застосовують спосіб пульверизації проявника, що поліпшує якість проявлення (особливо при малих розмірах зображень) і дозволяє автоматизувати процес.

При проявленні дуже важливо контролювати температуру і величину рН проявника. При зміні величини рН усього лише на десяту частку розмір елемента міняється приблизно на 10% від номіналу.

Сушіння проявленого шару проводиться при температурі 120-180°С. Від температури і характеру підвищення її під час сушіння залежить точність передачі розмірів зображень. Різке нагрівання викликає опливання країв, тому для точної передачі малих розмірів варто застосовувати плавне або ступінчасте підвищення температури.

Видалення фоторезисту здобуває винятково важливе значення, тому що від цієї операції залежить якість наступних технологічних операцій: окислення, дифузії, нанесення металу й ін. Поширено думку, що оскільки між фотолітографією і цими операціями завжди відбувається очищення (відмивання) пластин, то видалення фоторезисту зводиться тільки до руйнування і зняття полімеризованого рельєфу з фоторезисту. Це не так: видалення саме по собі повинно забезпечувати добре очищення поверхні від забруднень, внесених у процесі фотолітографії.

В даний час використовуються наступні методи видалення фоторезисту: деструкція полімеру (наприклад, сульфуванням у сірчаній кислоті); обробка в органічних розчинниках; плазмохімічна, термічна або фототермічна обробка, що зводиться в основному до окисної деструкції в кисні або кисневмісних газах.

Хімічна деструкція, наприклад, позитивного резиста в сульфатній кислоті приводить до утворення коротких ланцюгів полімеру (новолаку) і сульфурованих мономерів. Після обробки в сульфатній кислоті потрібно тільки відмивання водою. Ефективне сульфування йде в нагрітій до 160°С концентрованій кислоті. Крім чистої сульфатної кислоти застосовують її суміші з двохромовокислим калієм (хромпіком) або з пероксидом гідрогену. Останнє переважаюче, тому що в хромпіку утримуються іони калію, що можуть привести до нестабільності параметрів планарних приладів. Суміш сульфатної кислоти з 30 %-им пероксидом гідрогену (3:1) забезпечує при більш низькій температурі (70-100°С) хороше очищення поверхні.

Видалення фоторезисту хімічною деструкцією сульфатною кислотою досить ефективно, але не може бути застосовано для металізованих підкладок. При нагріванні сульфатної кислоти більше 160°С може утворитися плівка сульфатного кремнію, що впливає на процеси окислювання і дифузії.

Для видалення резиста з металевих поверхонь застосовуються такі органічні розчинники, як ацетон, метилетилкетон, целлозольв. Проводять тривалі витримки пластин в органічних розчинниках з послідовним видаленням набряклого рельєфу механічним способом (тампоном). Додавання до органічних розчинників органічних основ (етаноламінів) поліпшує якість процесу. Так, досить ефективне видалення фоторезисту з алюмінію здійснюють у нагрітій до 80°С суміші диметилформаміда з моноетаноламіном (1:1); цю операцію повторюють двічі, контролюючи якість видалення в темному полі мікроскопа. Якість видалення в органічних розчинниках у великій мері залежить від температури другого сушіння. Бажано підібрати такі режими фотолітографії, щоб ця температура була мінімальною (не вище 120°С). При глибокій полімеризації резиста, що настає при 150-200°С, за допомогою органічних розчинників не вдається видалити рельєф з підкладки навіть при додатковому механічному впливі, тобто протиранню тампоном або ультразвуковій обробці.

Обмежені можливості хімічних методів обумовили необхідність розробки більш ефективних способів видалення фоторезисту, у першу чергу, з металевих поверхонь. Так, було знайдено, що при обробці резиста в середовищі кисню при температурах 700-800°С відбувається одночасно окисна і термічна деструкція, резист видаляється з великою швидкістю. Освітлення підкладки ультрафіолетовим світлом дозволяє різко знизити температуру обробки: резист видаляється при 250°С за 25-40 хвилин. Додавання 2% озону прискорює процес видалення резиста.

Все більш широке застосування знаходить в останні роки плазмохімічний метод видалення, в основі якого лежить обробка в низькотемпературній кисневій плазмі при тиску 5·102 Па. У такій плазмі відбувається ряд хімічних перетворень, у результаті яких утворюються активні частки: атомарний кисень, озон і збуджені молекули кисню. Склад атомарного кисню, наприклад, може досягати 10-20%, стільки ж міститься і збудженого молекулярного кисню. Органічні сполуки, такі як фоторезист, під дією активного кисню розкладаються. Введення 1% азоту дозволяє збільшити швидкість видалення фоторезисту на 20%, а 1% водню - на 100% у порівнянні зі швидкістю видалення в чистій кисневій плазмі. Це явище пояснюється каталітичною дією таких домішок, як водень і азот, на вихід атомарного кисню.

Руйнування резиста під дією плазми починається в найбільш вразливихмістах - по подвійним зв’язкам. Потім утворюються продукти з малою молекулярною масою; вони в об’ємі плазми піддаються окислюванню, розкладаючись до кінцевих продуктів - вуглекислого газу і води.

Установка для плазмохімічного видалення фоторезисту показана схематично на рис.1.8.

Рис.1.8. Схематичне зображення установки плазмохімічного видалення фоторезисту:

1 - розрядна камера; 2 - індуктор; 3 - обкладки конденсатора; 4 - ротаметр; 5- натікач; 6 - редуктор; 7 - джерело газу; 8 - клапан; 9 - вакуумний датчик; 10 - кришка; 11- вакуум-провід; 12- випускаючий клапан.

Використання ВЧ генератора дозволяє збуджувати розряд електродами, винесеними за межі реакційно-розрядної камери, що забезпечує чистоту хімічних процесів. Кисень надходить у реакційно-розрядну камеру і безупинно відкачується вакуумним насосом для підтримки постійного тиску. Реакційно-розрядна камера має складну конструкцію, від якої залежить якість видалення резиста і ступінь впливу плазми на параметри напівпровідникових структур. Справа в тому, що в камері виникає електромагнітне поле з високою напруженістю, що викликає деградацію параметрів структур, меншу в біполярних і досить істотну в МОН-структур. Індуковані ВЧ плазмою заряди накопичуються на поверхні розділу окисел - кремній і погіршують електричні характеристики. Спостерігалося зниження пробивної напруги р-n-переходів, збільшення струмів витоку, поява інверсійних каналів, зниження коефіцієнта підсилення по струму транзисторів і т.д. Обробка пластин з МОН-структурами викликає появу позитивного заряду в окислі під затвором; напруга плоских зон росте, розкид цього параметра від пластини до пластини також збільшується. Наступний температурний відпал при 500-1000°С частково знімає ці небажані ефекти. Менш чуттєві до обробки в плазмі МОН-структури з кремнієвими затворами і структури, у яких окисел під затвором легований фосфором. Крім того, показано, що, якщо слідом за видаленням резиста в кисневій плазмі провести обробку в аргоновій плазмі, ступінь деградації окисла зменшиться .

Конструкція камер в установках плазмохімічного видалення резиста така, що газ надходить у реакційний об’єм через систему трубок, у яких збуджується розряд. За рахунок цього пластини відділені від зони максимальної напруженості поля. Одна з основних вимог до реакційно-розрядної камери - забезпечення рівномірності процесу видалення. Швидкість окисного руйнування і видалення резиста в плазмі залежить від багатьох факторів: кількості активного кисню, а отже робочого тиску в камері, витрат кисню, падіння тиску в камері, складу і типу домішок у кисні; кількості оброблюваних пластин, точніше, від відстані між ними в касеті - при малих відстанях газ ніби затримується між пластинами і швидкість видалення падає; також важливу роль відіграють положення пластин у камері, геометричні розміри і маса кварцових касет; характеристик самої плазми, обумовлених способом введення кисню в камеру, місцем і методом додавання ВЧ енергії до об’єму газу; типу фоторезисту і товщини шару фоторезисту; рівня ВЧ потужності в розряді, від якого, зокрема, залежить розігрів резиста і підкладки.