Смекни!
smekni.com

Проектирование районной электрической сети (стр. 5 из 7)

Тз, Тл – соответственно количество зимних – 4800 и летних - 3960 часов;

(4.11)

Потери в КУ. Так как на всех ПС установлены батареи конденсаторов или Статические тиристорные компенсаторы (СТК) то потери во КУ будут выглядеть следующим образом


, (4.12)

где

- удельные потери активной мощности в компенсирующих устройствах, в данном случае - 0.003 кВт/кВар.

Уровни напряжения ПС не отличаются в обоих вариантах, поэтому трансформаторы, компенсирующие устройства и потери в них при сравнении можно не учитывать (они буду одинаковы).

4.2Сравнение конкурентоспособных вариантов

Так как в сравниваемых вариантах один уровень напряжения, следовательно трансформаторы и количество компенсирующих устройств в них будет неизменным. Кроме того ПС Г (4) запитывается одинаково в двух вариантах, поэтому в сравнении не участвует.

Отличаться будут только линии (протяжённость и сечение провода) и распределительные устройства питающие ПС А, Б, и В, то при сравнении целесообразно учитывать только различие в капиталовложениях на сети и распределительные устройства обозначенных объектов.

Сравнение по всем остальным параметрам в данном разделе не требуется. Данный расчет приведен в Приложении В.

По результатам расчётов построим таблицу 4.1, содержащую основные показатели сравнения экономической привлекательности каждого варианта

Таблица 4.1 – Экономические показатели сравнения вариантов.

№ варианта
, млн.руб
И, млн.руб З, млн.руб
1 1 187 74,55 181,7
2 1 072 80,09 198,8

Таким образом, мы получили самый оптимальный вариант схемы сети, который удовлетворяет всем предъявленным требованиям и при этом наиболее экономичен.- Вариант 1.


5. РАСЧЁТ И АНАЛИЗ УСТАНОВИВШИХСЯ РЕЖИМОВ

Цель этого раздела – просчитать типовые установившиеся режимы, характерные для этой сети и определить условия их допустимости. При этом необходимо оценить возможность существования «крайних» режимов и величины потерь мощности в различных элементах сети

5.1Ручной расчёт максимального режима

Подготовка данных для ручного расчёта максимального режима

Для ручного расчёта режима, прежде всего, необходимо знать параметры схемы замещения. При составлении данной, мы исходили из того, что на каждой ПС установлены 2 раздельно работающих на половину нагрузки трансформатора. Зарядную мощность линий мы разнесли по её узлам; трансформаторы представляем Г образной схемой, в которой ветвь поперечных проводимостей представлена потерями холостого хода(ХХ).

Схема замещения представлена на рисунке 5 и на листе графической части проекта.

Рисунок 5 – Схема замещения для расчёта режима.

Параметры узлов схемы сведены в таблицу 5.1


Таблица 5.1 - Параметры узлов схемы замещения

№ узла Тип узла Uном узла, кВ Рн, МВт Qн, МВАр
1 2 3 4 5
6 Балансирующий 110
5 Балансирующий 110
1 Нагрузочный 110
11 Нагрузочный 10 14,7 5,7
12 Нагрузочный 10 14,7 5,7
2 Нагрузочный 110
21 Нагрузочный 10 17,7 6,95
22 Нагрузочный 10 17,7 6,95
3 Нагрузочный 110
31 Нагрузочный 10 20,6 8,2
32 Нагрузочный 10 20,6 8,2
4 Нагрузочный 110
41 Нагрузочный 10 34,2 13,7
42 Нагрузочный 10 34,2 13,7

Параметры ветвей заданы в таблице 5.2.

Таблица 5.2 - Параметры ветвей схемы замещения

№ узла начала ветви № узла конца ветви Марка провода Активное сопротивление ветви, Ом Реактивное сопротивление ветви, Ом Зарядная мощность линии, МВАр
1 2 3 4 5 6
5 4 АС 240/32 2,7 9 0,76
6 4 АС 240/32 3,8 12,8 1,08
5 1 АС 300/39 2,2 9,6 0,71
5 3 АС 300/39 2 8,6 0,64
2 3 АС 120/19 1 9,5 0,72
1 2 АС 240/32 8 8,1 0,68

Для расчёта потоков мощностей по линиям необходимо рассчитать расчётные нагрузки, включающие в себя непосредственно нагрузки ПС, потери в трансформаторах, и зарядные мощности линий Пример расчета данной величины приведен в /5, с. 49-52/.


(5.1)

где

- максимальная зимняя нагрузка ПС 1;

- полные потери в 2 трансформаторах ПС 1;

- половины зарядных мощностей линий 1-5 и 1-2.

Алгоритм расчёта режим

Ручной расчёт режима наиболее экономически целесообразного варианта схемы сети произведём с помощью математического пакета MathCAD 14.0. Подробный расчёт режима представлен в приложении Г. В приложении Д представлены расчеты режимов с помощью ПВК: нормальных максимального и минимального и послеаварийного (ПА) .

Покажем коротко этапы ручного расчёта режима.

Имея расчётные нагрузки в четырёх основных узлах схемы приведём основные этапы расчёта.

Первоначально находим потоки мощности на головных участках 6-4 и 6-5. Для примера запишем для участка 6-4

(5.2)

где

- расчетная нагрузка 4-й ПС;

- сумма сопряжённых комплексов сопротивлений между источниками питания

Далее рассчитываются потоки мощности по остальным ветвям без учета потерь и определяем точки потокоразделов по активной и реактивной мощностям. В нашем случае данных участков не будет, однако будет уравнительная мощность, которая возникает из-за разности напряжений на ИП.


где

- сопряжённые комплексы напряжений источников питания.

После определения уравнительной мощности находятся фактические потоки мощности на головных участках сети.

После определения потоков мощностей на всех участках находим точки потокоразделов по активной и реактивной мощностям. Это точки определяются там, где поток мощности меняет знак на противоположный. В нашем случае узел 4 будет точкой потокораздела по активной и по реактивной мощности.

При дальнейшем расчёте мы разрезаем кольцо по точкам потокоразделов и считаем потоки мощности на этих участках с учётом потери мощности на них как для разветвлённой сети. К примеру

(5.5)

(5.6)

Зная потоки мощности на всех участках, определяем напряжения во всех узлах. Например, в узле 4


(5.7)

5.2Расчёт максимального, минимального и послеаварийного режима с помощью ПВК

Краткая характеристика выбранного ПВК

В качестве ПВК мы выбрали SDO-6. Данный ПВК предназначен для решения задач анализа и синтеза, возникающих при исследовании установившихся режимов ЭЭС и может использоваться при эксплуатации и проектировании ЭЭС в рамках АСДУ, САПР и АРМ ЭЭС.

ПВК моделирует действие и работу различных устройств, предназначенных для управления напряжением, перетоками активной и реактивной мощности, генерацией и потреблением, а также работу некоторых видов противоаварийной автоматики – от наброса мощности, повышения/понижения напряжения.

ПВК содержит достаточно полное математическое описание основных элементов сети ЭЭС - нагрузки(статические характеристики по U и f), генерации (учет потерь в генераторе в режиме СК , зависимость Qрасп(Pg)), коммутируемых реакторов, линий, трансформаторов линейно-дополнительных, 2-х и 3-х обмоточных с продольно-поперечным и связанным регулированием.

ПВК обеспечивает работу с расчетной схемой сети ЭЭС ,имеющей в своем составе выключатели , как элементы распределительных устройств станций и подстанций.

ПВК обеспечивает эффективное и надежное решение задач за счет избыточности состава алгоритмов их решения.

ПВК является удобным и эффективным средством достижения целей, формулируемых пользователем. В его составе реализовано значительное число основных и вспомогательных функций.

К основным функциям относятся:

1) расчет установившегося режима ЭЭС при детерминированном характере информации с учетом и без учета изменения частоты (модификации метода Ньютона-Рафсона);