Смекни!
smekni.com

Проектирование районной электрической сети (стр. 7 из 7)

В качестве специальных средств регулирования напряжения прежде всего могут быть использованы трансформаторы с регулированием напряжения под нагрузкой (РПН). Если с их помощью невозможно обеспечить удовлетворительные величины напряжений, следует рассмотреть целесообразность установки статических конденсаторов или синхронных компенсаторов. /3, с. 113/. Этого в нашем случае не требуется, так как вполне достаточно регулирование напряжений в узлах на низких сторонах с помощью РПН.

Существуют различные методики выбора регулировочных ответвлений трансформаторов и автотрансформаторов с РПН и определения получаемых напряжений.

Рассмотрим методику, основанную на непосредственном определении необходимого напряжения регулировочного ответвления и характеризующуюся, по мнению авторов, простотой и наглядностью.

Если известно приведенное к высокой стороне трансформатора напряжение на шинах низшего напряжения подстанции, то можно определить желаемое (расчетное) напряжение регулировочного ответвления обмотки высшего напряжения трансформатора


(6.1)

где

- номинальное напряжение обмотки низшего напряжения трансформатора;

- напряжение желаемое, которое необходимо поддерживать на шинах низшего напряжения в различных режимах работы сети UH — в режиме наибольшей нагрузки и в послеаварийных режимах и UH— в режиме наименьших нагрузок);

UH— номинальное напряжение сети.

Для сетей с номинальным напряжением 6 кВ необходимые напряжения в режиме наибольших нагрузок и в послеаварийных режимах равны 6,3 кВ, в режиме наименьших нагрузок они составляют 6 кВ. Для сетей с номинальным напряжением 10 кВ соответствующие значения составят 10,5 и 10 кВ. Если в послеаварийных режимах невозможно обеспечить напряжение UH, допускается его снижение, но не ниже 1 UH

Применение трансформаторов с РПН позволяет изменять регулировочное ответвление без их отключения. Поэтому следует определять напряжение регулировочного ответвления раздельно для наибольшей и наименьшей нагрузки. Так как время возникновения аварийного режима неизвестно, то будем считать, что этот режим возникает в наиболее неблагоприятном случае, т. е. в часы наибольших нагрузок. С учетом сказанного выше расчетное напряжение регулировочного ответвления трансформатора определяется по формулам:

для режима наибольших нагрузок

(6.2)

для режима наименьших нагрузок


(6.3)

для послеаварийного режима

(6.4)

По найденному значению расчетного напряжения регулировочного ответвления выбирают стандартное ответвление с напряжением, ближайшим к расчетному.

Определенные таким образом значения напряжений на шинах низшего напряжения тех подстанций, где применены трансформаторы с РПН, сравниваются с желаемыми значениями напряжения, указанными выше.

На трехобмоточных трансформаторах регулирование напряжения под нагрузкой выполняется в обмотке высшего напряжения, а обмотка среднего напряжения содержит ответвления, которые переключаются только после снятия нагрузки.

7. ОПРЕДЕЛЕНИЕ СЕБИСТОИМОСТИ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Целью этого раздела является определение себестоимости передачи электрической энергии в проектируемой сети. Этот показатель важен поскольку является одним из показателей привлекательности всего проекта в целом. Полная себестоимость передачи электрической энергии определяется как отношение издержек на сооружение сети в целом к суммарному её среднегодовому потреблению, руб/МВт

(7.1)

где

- суммарные издержки для всего варианта с учётом потерь электрической энергии, руб;

- среднегодовое электропотребление проектируемой сети, МВт
ч.

(7.2)

где

- максимальная потребляемая зимняя мощности рассматриваемой сети, МВт;

- чило часов использования максимальной нагрузки, ч.

Таким образом, себестоимость передачи электроэнергии получается равна 199,5 руб. за МВтч или 20 коп. за кВтч.

Расчет себестоимость передачи электроэнергии приведен в приложении Е.


ЗАКЛЮЧЕНИЕ

В процессе проектирования электрической сети нами было проанализировано заданное географическое расположение потребителей электрической энергии. При данном анализе были учтены мощности нагрузок потребителей, их взаимное расположение. На основе этих данных нами были предложены варианты схем электрической распределительной сети, наиболее полно отражающие специфику их составления.

С помощью расчета по типовым графикам электрических нагрузок нами были получены вероятностные характеристики, позволяющие с большей точностью проанализировать в дальнейшем все параметры режимов спроектированной электрической распределительной сети.

Также было произведено сравнение проектных вариантов сети по возможности технической реализации, по надежности, по экономическим вложениям.

В результате экономического просчета был выбран наиболее удачный вариант схемы ЭС из представленных нами на рассмотрение. Для этого варианта были рассчитаны 3 наиболее характерных для энергосистемы установившихся режима, в которых мы выдержали желаемое напряжение на шинах НН всех понизительных ПС.

Себестоимость передачи электроэнергии в предложенном варианте составил 20 коп. за кВтч.


БИЛИОГРАФИЧЕСКИЙ СПИСОК

1. Идельчик В.И. Электрические системы и сети

2. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов. Под ред. Блок В.М.

3. Поспелов Г.Е. Федин В.Т. Электрические системы и сети. Проектирование

4. Правила эксплуатации электроустановок ПУЭ издание 6, 7-е дополненное

5. Савина Н.В., Мясоедов Ю.В., Дудченко Л.Н. Электрические сети в примерах и расчётах: Учебное пособие. Благовещенск, Издательство АмГУ, 1999, 238 с.

6. Электротехнический справочник: В 4 т. Т 3. Производство, передача и распределение электрической энергии. Под общ. Ред. Проф. МЭИ Герасимова В.Г. и др. – 8-е изд., испр. И доп. – М.: Издательство МЭИ, 2002 г, 964 с.

7. Основы современной энергетики: учебник для вузов : в 2 т. / под общей редакцией чл.-корр. РАН Е.В. Аметистова. - 4-е изд., перераб. и доп. - М. : Издательский дом МЭИ, 2008. Том 2. Современная электроэнергетика / под ред. профессоров А.П. Бурмана и В.А. Строева. - 632 с., ил.

8. Порядок расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договоры энергоснабжения). Утвержден Приказом Минпромэнерго России от 22 февраля 2007 г. №49