Смекни!
smekni.com

Способы и методы повышения несущей способности ледяного покрова (стр. 9 из 12)

При возбуждении волн в сплошном ледяном покрове движущейся нагрузкой под критической или резонансной понимают скорость нагрузки, равную скорости распространения ИГВ. При такой скорости движение нагрузки сопровождается интенсивной подкачкой энергии в колеблющуюся систему, что вызывает увеличение прогибов льда.

Явление возрастания амплитуды ИГВ при таком режиме движения принято называть изгибно-гравитационным резонансом. На мелководье Vp равна фазовой скорости распространения гравитационных волн на поверхности чистой воды Vo с увеличением глубины в зависимости от параметров льда и вида нагрузки критическая скорость может быть меньше, равной или превосходить значение V0. В зависимости от соотношения, Vp и Vo физические процессы, сопровождающие колебания ледяного покрова, несколько отличаются. Общим будет оставаться сам характер деформации льда.

Размеры существующих СВП и интересующие нас параметры льда позволяют считать действие нагрузки от движущегося с резонансной скоростью СВП аналогичным действию сосредоточенной силы, перемещающейся с такой же скоростью. Поэтому физические процессы, происходящие при генерации СВП ИГВ, в соответствии с теоретическими исследованиями, будут определяться одним из трех возможных в практике случаев.

1. Vp > Vo. В начальный момент движения нагрузки прогиб льда уменьшается по сравнению со статическим. Интенсивность отпора воды по знаку совпадает со знаком интенсивности при статическом действии нагрузки. При V

Vp амплитуда прогибов льда растет, а интенсивность уменьшается. Когда V = Vo, интенсивность отпора обратится в нуль, т.е. архимедовы силы будут полностью уравновешиваться гидродинамическими усилиями. Вода перестает поддерживать ледяной покров, равновесие которого достигается только за счет упругих усилий, возникающих в ледяном покрове. В интервале скоростей V0<V<Vp интенсивность сил отпора воды имеет обратный знак. Таким образом, внутренние упругие силы, действующие в ледяном покрове, должны уравновесить не только приложенную нагрузку, но и добавочное давление, создаваемое инерцией воды. При скоростях, близких к: верхней границе рассматриваемого интервала, амплитуды колебаний льда резко возрастают. Случай, когда V = Vp, рассматривают как резонансный. Наконец, когда скорость нагрузки превзойдет критическую, V > Vp интенсивность отпора опять изменит знак, и вода вновь будет поддерживать ледяной покров. Амплитуды прогибов льда при дальнейшем росте скорости будут асимптотически стремиться к нулю.

2.Vp < Vo. По мере увеличения от нуля скорости движения нагрузки V возрастает интенсивность отпора воды, и одновременно растет амплитуда прогибов. При V

Vp амплитуда прогибов и интенсивность сил отпора значительно возрастают (резонанс). В интервале скоростей Vp < V < Vo интенсивность сил отпора меняет знак. С последующим ростом скорости VV() величина сил поддержания уменьшается и, переходя через нуль (при V = Vo), меняет знак на противоположный. По мере дальнейшего роста скорости амплитуда прогибов ледяного покрова неограниченно уменьшается.

3. Vp = Vo. В этом случае знак интенсивности отпора воды не будет меняться, т.е. вода будет всегда поддерживать ледяной покров. Резонанс наступает в момент, когда V = Vo. При сверхкритических скоростях движения нагрузки возникает одиночная волна изгиба, амплитуда которой по мере роста скорости стремится к нулю.

Таким образом, несмотря на то, что плавающий неограниченный ледяной покров и неограниченная поверхность чистой воды имеют бесконечный спектр частот, условия равновесия ледяной пластины позволяют из этого спектра выделить критическую частоту, являющуюся собственной частотой колебаний системы «лед-вода».

Анализ физических процессов, происходящих при распространении ИГВ в ледяном покрове, показывает, что максимальные прогибы и напряжения во льду возникают при скоростях движения нагрузки, близких к Vp. Поэтому случай V= Vp является расчетным при определении НДС ледяного покрова при действии на него нагрузки.

Рассмотренные физические явления характерны для установившегося процесса, т.е. спустя некоторое время после начала действия подвижной нагрузки. В начальный период значительную роль могут играть свободные колебания ледяного покрова.


Глава II. Выбор наиболее эффективных способов повышения несущей способности ледяного покрова

2.1. Результаты информационно-патентного поиска

В условиях северных регионов страны замерзающих рек со слабо развитой транспортной системой часто приходиться использовать ледяной покров в качестве автозимников и ледовых переправ. При недостаточной толщине льда и не очень низких температур использовать для этих целей ледяной покров затруднительно из-за недостаточной несущей способности. Это часто приводит к гибели автотранспорта или др. транспортных средств, в частности при аварийном использовании ледяного покрова в качестве для посадочных полос для самолетов.

Существующие методы и устройства для повышения прочности льда являются дорогостоющими и требуют больших трудозатрат (на льду сооружают специальные настилы из бревен что придает дополнительный вес и лед расслабляется (релаксация), а также уменьшается теплоизоляционные свойства), упрочняют лед путем полива, очищают поверхность льда от снега).

Для устранения известных недостатков этих способов и устройств на основе проделанного информационно-патентного поиска могут быть предложены следующие решения.

2.2. Классификация методов повышения несущей способности ледяного покрова.

2.2.1.Уменьшение температурного градиента:

2.2.1. Задачей заявляемого метода является создание ледяной платформы с такой грузонесущей способностью, которая будет обеспечивать безопасность движения по ней транспорта и надежные условия складирования грузов.

Это достигается повышением цилиндрической жесткости ледяной пластины D, которая в свою очередь зависит от толщины ледяного покрова σ [49].

Существенные признаки: Под воздействием низких температур (t<0 0C) в месте выработки траншеи (высотой h, шириной В) и после выработки сквозных отверстий 4 при полном замерзании воды 2 общая толщина ледяной грузонесущей платформы увеличиться, и станет равной σ = H1+ h, что приведет к увеличению ее цилиндрической жесткости D [Патент РФ № 2144967].

Где может использоваться: При создании платформы предназначенной для движения транспорта или хранения грузов на ледяной поверхности любой гидросистемы в зимний период времени или в районах Земли с круглогодичной температурой ниже 0 0С.

2.2.2. В данном методе используется компрессор 4, который через трубы 3 в отверстия 2 в ледяном покрове 1 закачивает холодный (t<00C) атмосферный воздух, тем самым понижает температуру ледяного покрова, что приведет к увеличению прочности льда и исчезновению воздушных полостей подо льдом, что приведет к интенсивному увеличению прироста толщины льда. Тем самым несущая способность ледяного покрова повыситься [Патент РФ № 2170790].

Где может использоваться: При создании платформы предназначенной для движения транспорта на ледяной поверхности любой гидросистемы в районах Земли с перепадами температуры по толщине ледяного покрова от 0 0С на нижней кромке до температуры окружающего воздуха на верхней кромке льда.

2.2.2.1. Данный метод является усовершенствованным по сравнению с 2.2.2. т.к. для увеличения несущей способности ледяного покрова используется ребра жесткости 4, которые образуют замкнутые по периметру области 5. После закачивания воздуха 7 в отверстия 6, воздух заполняет образованные области 5, тем самым повышает интенсивность нароста толщины ледяного покрова 1 [Патент РФ № 2161673].

Где может использоваться: При создании ледяной грузонесущей платформы предназначенной для хранения грузов на ледяной поверхности любой гидросистемы в районах Земли с перепадами температуры по толщине ледяного покрова от 0 0С на нижней кромке до температуры окружающего воздуха на верхней кромке льда.

2.2.2.2. Данный метод является усовершенствованным по сравнению с 2.2.2.1. т.к. для увеличения несущей способности ледяного покрова в образовавшиеся области 5 закачивается воздух вместе с переохлажденным легким, мелкодисперсным, обладающим теплоизоляционными свойствами материал, например древесные опилки, что приводит к более интенсивному увеличению прочности нижнего слоя ледяного покрова 1 и соответственно к повышению несущей способности всей ледяной платформы [Патент РФ № 2193621].

Где может использоваться: При создании ледяной платформы повышенной грузонесущей способности предназначенной для хранения грузов на ледяной поверхности любого акватория в районах Земли с перепадами температуры по толщине ледяного покрова от 0 0С на нижней кромке до температуры окружающего воздуха на верхней кромке льда.