Смекни!
smekni.com

Тепловые насосы 2 (стр. 2 из 4)

1.5 Преимущества

Основные преимущества замкнутых теплонасосных систем:

• непрерывность работы системы: даже если выйдут из строя один или несколько агрегатов, их изолируют и будут восстанавливать, что никак не повлияет на работу остальных;

• одновременная возможность обеспечения охлаждения и отопления: тепловые насосы класса «вода-воздух», подключенные к водопроводному контуру, в зависимости от потребностей пользователей обеспечивают тепло или охлаждение;

• КПД тепловых насосов класса «вода-воздух» процентов на 20–30 выше, чем КПД конденсирующих воздушных агрегатов, соответственно, ниже энергопотребление.

1.6 Недостатки

Основными недостатками такого рода систем являются:

• шум, генерируемый автономными агрегатами, установленными в помещении;

• пространство, забираемое в помещении под установку агрегата;

• в случае необходимости проведения работ по техническому обслуживанию агрегата такие работы проводятся непосредственно в обслуживаемом помещении.

Нормативы UNI по тепловым насосам

Стандарты ARI по тепловым насосам

(ARI – Институт кондиционирования и холодильного оборудования)

3. Тепловые насосы в Европе – сколько и какие?

По данным на 1997 год из 90 миллионов тепловых насосов, установленных в мире, примерно только 5%, или 4,28 миллиона аппаратов, смонтировано в Европе. Совсем немного по сравнению с 57 миллионами систем, имеющихся в Японии, где такое оборудование является основным в обеспечении отопления жилого фонда.

В Соединенных Штатах насчитывается 13,5 миллионов установленных агрегатов, а еще только развивающийся китайский рынок достиг уровня 10 миллионов систем.

Подобное нерасположение Европы к тепловым насосам имеет свои причины, однако, в последнее время отношение начинает меняться. Примерная оценка числа тепловых насосов, установленных в главных странах Сообщества в жилом фонде, торгово-административных и промышленных сооружениях, приводится в табл. А. Львиную долю составляют страны Южной Европы: Испания, Италия и Греция.

В жилом фонде имеется три миллиона установленных тепловых насосов. Однако по степени охвата показатель довольно скромный – что-то около 1%. Хотя очевидно, что установленные в торгово-административном фонде 1,2 миллиона агрегатов, составляя абсолютное наименьшее значение, будут иметь несколько больший охват.

4. Виды установленных систем

Примерно 77% установленных в Европе тепловых насосов используют наружный воздух в качестве источника тепла, хотя в Швеции, Швейцарии и Австрии преобладают тепловые насосы, забирающие тепло из грунта по заглубленному змеевиковому теплообменнику: данные по этим странам составляют соответственно 28, 40 и 82%. В Северной Европе зачастую тепловые насосы применяются только для отопления и приготовления горячей санитарной воды.

В большинстве случаев в качестве жидкого теплоносителя используется низкотемпературная вода, питающая радиаторы и теплые (излучающие) полы.

По данным недавнего опроса, проведенного одним из крупнейших мировых производителей холодильных компрессоров, общий объем производства тепловых насосов класса «воздух-вода», предназначенных только для отопления взамен отопительных газовых и жидко-топливных котлов, составит в Европе 13 000 в 2001 году, 25 000 в 2002 году и 35 000 в 2003 году.

Системы класса «воздух-воздух», главным образом раздельные (англ. – split) реверсивные, преобладают в Южной Европе: Италии, Испании и Греции. В этих странах, однако, выбор системы на основе теплового насоса зачастую обусловлен необходимостью кондиционирования воздуха в летний период.

Впрочем, в регионах, лежащих еще южнее, и на островах такие системы часто полностью обеспечивают отопительные потребности в зимний период.

5. Источники тепла

Тепловые, энергетические и экономические характеристики тепловых насосов тесно взаимоувязаны с характеристиками источников, откуда насосы черпают тепло.

Идеальный источник тепла должен давать стабильную высокую температуру в течение отопительного сезона, быть изобильным, не быть коррозийным и загрязняющим, иметь благоприятные теплофизические характеристики, не требовать существенных инвестиций и расходов по обслуживанию.

В большинстве случаев имеющийся источник тепла является ключевым фактором, определяющим эксплуатационные характеристики теплового насоса. В табл. 1 приведены температурные показатели, типичные для наиболее распространенных источников тепла.

Наружный и отводимый воздух, почва и подпочвенная вода представляют источники тепла, широко используемые в небольших системах на базе тепловых насосов, тогда как морская, озерная и речная вода, геотермические источники и грунтовые воды применяются для систем большой мощности.

4.1 Воздух

Наружный воздух, будучи совершенно бесплатным и общедоступным, является наиболее предпочитаемым источником тепла.

Тем не менее, тепловые насосы, применяющие именно воздух, имеют фактор сезонной нагрузки (SPF) в среднем ниже на 10–30% по сравнению с водяными тепловыми насосами. Это объясняется следующими обстоятельствами:

- быстрым снижением мощности и производительности с падением наружной температуры;

- относительно большой разностью температур конденсации и испарения в период минимальных зимних температур, что в целом снижает эффективность процесса;

- энергозатратами на размораживание испарительной батареи и функционирование соответствующих вентиляторов.

В условиях теплого и влажного климата на поверхности испарителя в диапазоне от 0 до 6°C образуется изморось, что ведет к снижению мощности и производительности теплового насоса.

Иней уменьшает площадь свободной поверхности и препятствует прохождению воздуха. Как следствие, снижается температура испарения, что в свою очередь способствует нарастанию инея и дальнейшему неуклонному снижению производительности вплоть до возможной полной остановки агрегата вследствие срабатывания контрольного датчика низкого давления, если прежде не будет устранено обледенение.

Размораживание батареи осуществляется путем инверсии охлаждающего цикла или иными, хотя и менее эффективными способами.

Энергопотребление имеет тенденцию к росту, общий коэффициент производительности СОР сокращается с увеличением частоты размораживания. Применение специальной системы контроля, обеспечивающей размораживание по требованию (то есть когда оно фактически необходимо), а не периодическое, может существенно повысить общую эффективность.

Еще один источник тепла в жилых и торгово-административных сооружениях – отводимый вентиляционный воздух.

Тепловой насос регенерирует тепло из отводимого воздуха и обеспечивает приготовление горячей воды или теплого воздуха для отопления помещений. В этом случае, однако, требуется постоянное вентилирование в течение всего отопительного сезона или даже целого года, если предусмотрено кондиционирование помещений в летний период.

Существуют аппараты, в которых конструктивно изначально заложена возможность использования и отводимого вентиляционного воздуха, и наружного воздуха. В некоторых случаях тепловые насосы, применяющие отводимый воздух, используются в комбинации с рекуператорами «воздух-воздух».

4.2 Воды

Подпочвенные воды есть во многих местах, они имеют достаточно стабильную температуру в диапазоне от 4 до 10°C .

Для ее использования применяются главным образом открытые системы: подпочвенная вода откачивается и подается на теплообменник системного агрегата, где у воды отбирается часть содержащегося в ней тепла. Вода, охлажденная таким образом, отводится в сливной колодец или в поверхностные воды. Открытые системы требуют самого тщательного проектирования в целях предотвращения проблем с замерзанием, коррозией и накоплением отложений.

Большим недостатком тепловых насосов, работающих на подпочвенных водах, является высокая стоимость работ по монтажу водозабора. Кроме того, следует учитывать требования, порой весьма жесткие, местных администраций в вопросах организации сточных вод.

Речная и озерная вода с теоретической точки зрения представляется весьма привлекательным источником тепла, но имеет один существенный недостаток – чрезвычайно низкую температуру в зимний период (она может опускаться до уровня чуть выше или практически вплотную к 0°C ).

По этой причине требуется особое внимание при проектировании системы в целях предотвращения замораживания испарителя.