Смекни!
smekni.com

Тепловые насосы 2 (стр. 3 из 4)

Морская вода представляется в некоторых случаях отличным источником тепла и используется главным образом в средних и крупных системах.

На глубине от 25 до 50 м морская вода имеет постоянную температуру в диапазоне от 5 до 8°C . И, как правило, проблем с образованием льда не возникает, поскольку точка замерзания здесь от -10 до -2°C . Есть возможность использовать как системы прямого расширения, так и системы с рассолом.

Важно только использовать теплообменники и насосные агрегаты, стойкие к воздействию коррозии, и предотвращать накопление отложений органического характера в водозаборном трубопроводе, теплообменниках, испарителях и пр.

Грунтовым водам свойственна относительно высокая и стабильная в течение года температура.

Основные ограничения здесь, как правило, могут составлять расстояние транспортировки и фактические ресурсы, объем которых может меняться.

Примерами возможных источников тепла в данной категории носителей можно считать грунтовые воды на канализационных участках (очистные и прочие водостоки), промышленные водостоки, водостоки участков охлаждения промышленных конденсаторов или производства электроэнергии.

4.3 Грунт

Тепловые насосы, применяющие грунт в качестве источника тепла, используются для обслуживания жилых и торгово-административных сооружений. Грунт, как и подпочвенные воды, имеет одно преимущество – относительно стабильную в течение года температуру. Тепло отбирается по трубам, уложенным в землю горизонтально или вертикально (спиралеобразно). Здесь могут использоваться:

- системы прямого расширения с охлаждающей жидкостью, испаряющейся по мере циркуляции в контуре трубопровода, заглубленного в грунт;

- системы с рассольной жидкостью, прокачиваемой по трубопроводу, заглубленному в грунт.

В целом тепловые насосы рассольного типа имеют более низкую производительность по сравнению с агрегатами первого типа в силу происходящего в них «двойного» теплообмена (грунт-рассол, рассол-хладагент) и энергозатрат на обеспечение работы циркуляции рассола. Хотя справедливости ради надо заметить, что обслуживать такие системы существенно проще.

Тепловая емкость грунта варьируется в зависимости от его влажности и общих климатических условий конкретной местности. В силу производимого отбора тепла во время отопительного сезона его температура понижается.

На участках с холодным климатом большая часть энергии извлекается в форме латентного тепла, когда грунт промерзает. В летний период, однако, под действием солнца температура грунта вновь поднимается вплоть до создания возможности полностью вернуться к первоначальным условиям.

Действующие по такому принципу тепловые насосы обычно называют «геотермическими», что по сути своей неверно, поскольку здесь не задействовано радиогенное тепло земли, содержащееся в глубинных скальных породах.

Геотермическими источниками (скальными) можно пользоваться в регионах, где подпочвенных вод мало или нет совсем. Тогда нужно пробурить колодцы глубиной от 100 до 200 м. В том случае, если требуется обеспечить высокую тепловую мощность, колодцы бурятся под определенным наклоном таким образом, чтобы добраться и упереться в большой скальный массив. Для таких тепловых насосов также применяется рассольная жидкость и пластмассовый сварной трубопровод, извлекающий тепло из скалы. В некоторых системах скальная порода используется для аккумулирования тепла или охлаждающей энергии. В силу высокой стоимости буровых работ скальные породы для обслуживания жилого сектора применяются довольно редко.

6. Функциональные температуры

Поскольку тепловые насосы имеют тем большую производительность, чем меньше разность температур источника тепла и распределяемой жидкости-теплоносителя, температура подачи такого теплоносителя во время отопительного сезона должна быть как можно ниже. Некоторые значения коэффициента СОР, типичные для тепловых насосов класса «вода-вода» для различных типов систем, приведены в табл. 2.

Существует великое множество различных моделей и конструктивных модификаций тепловых насосов в широком диапазоне мощности, которые могут удовлетворить потребности практически любого пользователя. Они вполне могут успешно заменить традиционные газовые котлы низкотемпературных отопительных систем как в жилом, так и в торгово-административном секторе. В ближайшие годы следует предусмотреть существенный рост числа таких агрегатов, которые постепенно начнут занимать и те отопительные участки, где пока еще доминируют газовые котлы.

Рис.1. Типичная динамика коэффициента СОР теплового насоса класса «земля-воздух» в зависимости от разности температур грунта и приготовляемой горячей воды.

7. Среда и тепловые насосы

Эффективность тепловых насосов в последние годы значительно возросла в силу изменений, внесенных в конструкцию компрессоров, теплообменников и систем управления на базе микропроцессоров.

В результате их воздействие на среду существенно снизилось, вплоть до того, что теперь они считаются более «чистыми» в экологическом плане, нежели самые современные высокоэффективные газовые котлы.

Для оценки реальной эффективности теплового насоса в реальных эксплуатационных условиях коэффициент сезонной производительности SEER является более важным, чем КПД. Это показатель соотношения между общей тепловой энергией в Вт, выдаваемой за сезон, и общей электроэнергией, потребляемой для обеспечения работы теплового насоса в течение отопительного сезона в конкретных эксплуатационных условиях.

Современные тепловые насосы класса «воздух-воздух» обеспечивают рабочий показатель SEER на уровне 3. Для сравнения: насосы классов «вода-вода» и «грунт-вода» работают более эффективно и показатель SEER у них может подниматься до 4. На основе показателя SEER можно провести сравнительный анализ воздействия на среду тепловых насосов и газовых котлов по годовым эксплуатационным показателям сгорания, объемам выбросов в атмосферу СО2.

Кривые на рис. А обозначают два режима выброса СО2:

- котлы: выбросы СО2, образуемого при сгорании газа, – 221 г на кВт.ч произведенного тепла;

- тепловые насосы: выбросы СО2, образуемого при производстве электроэнергии, – 460 г на кВт.ч произведенного электричества.

Для примера: тепловой насос с показателем SEER 3,0 по сравнению с котлом, имеющим коэффициент годовой производительности на уровне 90% (уровень чрезвычайно высокий и труднодостижимый), воздействует на среду на 40% «мягче», чем такой котел. Иными словами, тепловой насос выбрасывает в атмосферу СО2 на 40% меньше, чем котел той же мощности за аналогичный временной отрезок.

Источник: H. J. Laue IZW e V., Germany, Heat Pumps – Status and Trends, Europe. VI конференция по тепловым насосам Международного энергетического агентства. Берлин, 1999.

Рис.2. Процентное сокращение выбросов СО2 тепловым насосом в зависимости от соответствующего показателя SEER по сравнению с котлом и в зависимости от соответствующего коэффициента сезонной производительности.

8. Надежность и долговечность тепловых насосов

Помимо весьма высокой эффективности тепловые насосы достигли в настоящее время такого уровня конструктивной прочности, который обеспечивает чрезвычайную долговечность и более чем внушительную надежность. По результатам исследования, проведенного ASHRAE (Американским обществом инженеров по отоплению, охлаждению и кондиционированию воздуха), отмечены следующие данные:

- бытовые тепловые насосы класса «воздух-воздух» – 15 лет;

- тепловые насосы сферы обслуживания класса «воздух-воздух» – 15 лет;

- тепловые насосы сферы обслуживания класса «вода-воздух» – 19 лет.

Цифры весьма внушительные и лишний раз подтверждают высокое качество этих агрегатов. В их пользу говорит и такой факт: исследование проводилось на машинах, оснащенных большей частью переменными герметичными компрессорами. Если бы проверка проводилась в наши дни, результаты могли бы быть еще более впечатляющими, поскольку ныне почти повсеместно применяются спиральные (англ. - scroll) компрессоры.

Результаты, полученные экспертами ASHRAE, нашли подтверждение в данных других исследований: институт EPRI еще в 1990 году провел опрос сотрудников трех энергетических компаний об установленных у обслуживаемых ими пользователей тепловых насосах общим количеством 4 557 единиц в различных регионах Соединенных Штатов. По результатам этих исследований спустя 15 лет после ввода в эксплуатацию тепловых насосов больше половины из них продолжали успешно работать. В этом исследовании большей частью фигурировали агрегаты с герметичными компрессорами переменного типа, примерно в половине случаев с момента установки они не менялись. Следует подчеркнуть, что это были реверсивные тепловые насосы, имеющие два рабочих режима – отопления и охлаждения, то есть агрегаты, которые работали на износ практически круглый год. Замены, произведенные на второй половине аппаратов, были обусловлены их моральным старением, а не поломкой (то есть потребитель предпочел установить более современные модели).

Развитие и совершенствование технологии изготовления тепловых насосов последних лет еще более утверждают в преимуществе этих систем перед газовыми котлами.