Смекни!
smekni.com

Синхронизация как механизм самоорганизации системы связанных осцил (стр. 2 из 3)

5. Характеристики ритма: период и частота

Автоколебательные системы могут демонстрировать ритмы самой разной формы, от простых, близких ксинусоиде, сигналов до после­довательности коротких импульсов. Главной характеристикой таких систем является периодТ, т. е. время одного колебания.

Часто бывает удобно характеризовать ритм числом колебаний в единицу времени или же частотой колебаний

f=

. (1)

При теоретическом анализе колебаний более удобной часто бывает угловая частотаω=2πf=2π/Т.

6. Подстройка ритмов: захват фаз и частот

Два неидентичных осцилляторов, которые, взятые по отдельности, имеют различные периоды, при наличии связи подстраивают свои ритмы и начинают демонстрировать колебания с общим периодом. Это явление часто и называют в терминах совпадения частот их захватом. Произойдет это или нет, т. е. синхронизуются ли они, зависит от двух факторов:

1. Сила связи.Этот параметр характеризует, насколько слабо или сильно взаимодействие;

2. Расстройка по частоте.Расстройка частот Δf=f1f2 характеризует, насколько различны осцилляторы. Представим себе следующий эксперимент. Пусть собственные частоты двух невзаимодействующих осцилляторов f1 и f2. Свяжем осцилляторы и измерим частоты F1 и F2 связанных систем. Мы можем выполнить такие измерения для различных параметров расстройки и получить зависимость ΔF=F1F2 от Δf [1] (pис. 2).

Эта зависимость типична для взаимодействующих автоколебательных систем, независимо от их природы (механической, химической, электронной, и т. д.). Анализ показывает, что, если рассогласованность автономных систем не слишком велика, то частоты двух систем становятся равными, или захваченными, т. е. наступает синхронизация. В общем случае ширина области синхронизации возрастает с увеличением силы связи [3].

Рис. 2. График «разность наблюдаемых частот - расстройка» для некоторой фиксированной силы связи. Разность частот ΔF двух связанных осцилляторов изображена как функция расстройки Δf несвязанных систем. В определенном диапазоне расстроек частоты связанных осцилляторов идентичны (ΔF=0), что указывает на синхронизацию.

Более детальное рассмотрение синхронных состояний показывает, что синхронизация двух автоколебательных систем может возникнуть в двух формах. Чтобы описать эти режимы, введем ключевое понятие теории синхронизации, а именно понятие фазы осциллятора [1]. Фаза понимается как величина, пропорциональная доле периода и возрастающая на 2π в течение одного цикла колебаний. Фаза однозначно определяет положение периодического осциллятора. Как и время, она параметризует сигнал внутри одного цикла.

φ(t)=φo +2π

(2)

Рассмотрим разность фаз двух автоколебательных систем. Если в результате синхронизации разность фаз φ1–φ2 близка к нулю, то такой режим называется синфазной синхронизацией. Если взглянуть на колебания осцилляторов с большой точностью, то можно выявить, что эти колебания не в точности совпадают, так что обычно говорят о фазовом сдвиге между двумя колебаниями. Этот фазовый сдвиг может быть очень мал, но он всегда присутствует, если две системы изначально имели разные периоды, или же разные частоты.

Если разность фаз синхронизованных осцилляторов близка к π, то говорят о синхронизации в противофазе.

Возникновение определенного соотношения между фазами двух синхронизованных автоколебательных систем часто называют за­хват фаз. Т. о. можно сформулировать основной признак синхронизации: будучи связанными, два осциллятора с из­начально различными частотами и независимыми фазами подстра­ивают свои ритмы и начинают осциллировать на общей частоте [3]. Это также предполагает наличие определенного соотношения меж­ду фазами двух систем. Так, говорят, что фазы φ1 и φ2 захвачены в отношении n : m, если выполняется неравенство:

|nφ1 – mφ2| < constant (3)

Подводя итоги, можно сказать, что если в каком-либо эксперименте мы наблюдаем две переменные, которые кажутся изменяющимися синхронно, то это не обязательно означает, что мы наблюдаем син­хронизацию. Чтобы назвать явление синхронизацией, мы должны быть уверены в том, что:

·мы анализируем поведение автоколебательных систем,
т.е. систем, способных генерировать собственные ритмы;

·системы подстраивают свои ритмы за счет слабого взаимодействия;

·подстройка ритмов происходит в некотором диапазоне рас­строек между системами; в частности, если частота одного из
осцилляторов медленно изменяется, то вторая система следует
за этим изменением.

Соответственно, одного наблюдения недостаточно, чтобы сде­лать вывод о наличии синхронизации. Синхронизация — это слож­ный динамический процесс, а не состояние [1].

7. Синхронизация: обзор различных случаев

Перечислим различные формы синхронизации без учета природы колебаний (т.е. генериру­ются ли они электронным устройством или живой клеткой) и природы связи (т.е. осуществляется ли она за счет механического соединения или диффузии реагентов химической реакции), т.е. оста­новимся на общих свойствах: являются ли колебания периодически­ми или нерегулярными; является ли связь взаимной или однонапра­вленной и т.д.Это не будет полной и строгой классификацией, а просто кратким обсуждением основных проблем теории синхрони­зации.

7. 1. Синхронизация внешней силой

Синхронизация была открыта Гюйгенсом как побочный результат его усилий по созданию высокоточных часов. В наши дни этот эффект используется для точного и недорогого измерения времени с помощью радиоуправляемых часов. В этом случае передаваемый порадио слабый сигнал от центральных высокоточных часов ежеми­нутно подстраивает ритм других часов, темсамым захватывая.

Похожая схема синхронизации была «реализована» природой для подстройки биологических часов, которые регулируют суточные (циркадные) и сезонные ритмы живых систем, от бактерии до че­ловека.

7. 2. Ансамбли осцилляторов и колебательные среды

Во многих естественных ситуациях взаимодействуют более двух объектов. Если два осциллятора способны к подстройке ритмов, то можно ожидать такой способности и от большого числа осцилляторов. Такая система называется ансамблем взаимно связанных осцилляторов. При этом можно гово­рить о глобальной (каждый с каждым) связи. Бывают и другие ситуации, когда осцилляторы упорядочены в цепочки или решет­ки, где каждый элемент взаимодействует с несколькими соседями. Такие структуры типичны для созданных человеком систем, напри­мер, для решеток лазеров, но могут также встречаться и в природе. Эксперименты показывают, что соседние осцилляторы в цепочке часто подстраивают своичастоты и формируют син­хронные кластеры.

Достаточно часто мы не можем выделить отдельный колебатель­ный элемент внутри естественного объекта. Вместо этого мы долж­ны рассматривать систему как непрерывную колебательную среду, где также возможна синхронизация.

7. 3. Фазовая и полная синхронизация хаотических осцилляторов

В наши дни широко известно, что автоколебательные системы, на­пример нелинейные электронные цепи, могут генерировать довольно сложные, хаотические сигналы. Многие естественные системы также демонстрируют сложное поведение. Недавние исследования показывают, что при наличии связи такие системы также могут синхронизоваться. Конечно же, в этом случае нам необходимо уточ­нить понятие синхронизации, потому что совершенно не очевидно, как характеризовать ритм хаотического осциллятора. Иногда хаотические сигналы относительно просты, как, например, показанный на рисунке 3. Такой сигнал — «почти пе­риодический». Можно считать, что он состоит из похожих циклов с изменяющейся амплитудой и периодом (который может быть гру­бо определен как интервал между соседними максимумами). Выбрав большой интервал времени τ, мы можем сосчитать число циклов в этом интервале Nτ,вычислить среднюю частоту

(4)

и взять ее в качестве характеристики хаотического колебательного процесса [4].

Рис.3. Пример хаотических колебаний.

С помощью средних частот мы можем описать коллективное поведение взаимодействующих хаотических систем точно так же, как и периодических. Если связь достаточно велика (например, для резистивно связанных электрических цепей это означает, что со­противление должно быть достаточно мало), средние частоты двух осцилляторов становятся равными. Важно отметить, что совпадение средних частот не означает, что сигналы также совпадают. Оказывается, что слабая связь не оказывает влияния на хаотическую природу обоих осцилляторов, их амплитуды остаются нерегулярными и некоррелированными, в то время как частоты подстраиваютсятаким образом, что мы можем говорить о фазовом сдвиге между сигналами. Такой режим называется фазовой синхронизацией хаотических систем.

Очень сильная связь стремится сделать состояния обоих осцил­ляторов идентичными. Она влияет не только на средние частоты, но также и на хаотические амплитуды. В результате, сигналы со­впадают (или почти совпадают) и наступает режим полной син­хронизации.