Смекни!
smekni.com

Синхронизация как механизм самоорганизации системы связанных осцил (стр. 3 из 3)

Явление синхронизации может также наблюдаться в больших ан­самблях взаимно связанных хаотических систем и в сформирован­ных имипространственных структурах [1].

8. Цепочки осцилляторов

8. 1. Синхронизация N связанных осцилляторов

Рассмотрим синхронизацию N связанных осцилляторов на примере электронных генераторов, связанных через емкость, индуктивность и сопротивление. Уравнения колебаний в такой системе имеют вид:

(i=1,2,...,N). (5)

Здесь xi – напряжения на входах усилителей, ωi – собственные частоты колебательных контуров, μi – превышения над порогом генерации, βij(1) – коэффициенты индуктивной связи, βij(2) – коэффициенты емкостной связи, βij(3) – коэффициенты связи через сопротивление, (1 – γixi2) – функции, характеризующие нелинейные свойства усилителей.

Будем считать, что частоты автономных генераторов близки друг к другу, тогда решение уравнения (5) можно искать в виде:

xiicos(ωt+φi),

= – Аiωsin(ωt+φi), (6)

где ω=(1/N)

.

Для амплитуд и фаз получаем следующие уравнения:

(7)

(8)

где Ai0 – амплитуда колебаний i-го генератора в отсутствии связи, Φiji – φj, (9)

Δii – ω, (10)

mij=

[(βij(1)ω2 – βij(3))2 + βij(2)2]1/2, (11)

(12)

Рассмотрим случай слабой связи между генераторами, когда в уравнениях для фаз (8) можно положить Ai=Ai0. В синхронном режиме, когда

, получим следующую систему уравнений для определения стационарных разностей фаз:

(13)

где i=1,2,...,N – 1, Δi,i+1i – ωi+1i – Δi+1.

Система уравнений (13) аналитически может быть решена лишь для частного случая полностью идентичных генераторов, когда Ai0=A0, mij=m, χij=χ, ωi=ω для всех i и j. В этом случае уравнения (13) примут вид:

(i=1,...,N – 1).(15)

Уравнение (15) имеет два частных решения:

Φij= 0, (16)

Φij= ± (j – i)

(17)

Частота синхронных колебаний в случае синфазного режима работы генераторов равна ωс = ω + (N – 1)mcosχ, а во втором случае ωс = ω – mcosχ [3].

8. 2. Пример: цепочка лазеров

Синхронизация в цепочке лазеров часто используется для получе­ния излучения большой интенсивности. Этого можно достигнуть, расположив лазеры в линию, так, что каждый взаимодействует с ближайшими соседями или со всеми другими лазерами. Добиться взаимодействия каждого лазера с остальными можно с помощью специального пространственного фильтра. При такой конфигурации каждый лазер взаи­модействует с остальными, но сила связи зависит от рас­стояния между лазерами. Результаты, представленные на рисунке 4, четко указывают на синхронизацию. Действительно, если бы лазеры были не синхронизованы, то излучение в дальней зоне представляло бы собой сумму некогерентных колебаний, и по­тому было бы пространственно однородным. Неоднородность распределения на рисунке 4 появляется из-за захвата фаз, это типичная интерференционная картина.

Рис. 4. Интенсивность излучения в дальней зоне при слабой связи лазеров.

9. Образование кластеров

9. 1. Кластеры в дискретной цепочке осцилляторов

Если в дискретной цепочке осцилляторы взаимодействуют очень слабо, то синхронизации не будет, и каждая система будет колебаться со своей частотой. При достаточно сильной связи будет наблюдаться синхронизация всей цепочки. В промежуточном случае можно ожидать появление частично синхронизированных режимов, с несколькими различными частотами. Поскольку связь стремится синхронизировать ближайших соседей, образуются кластеры синхронизированных осцилляторов [1].

Рис. 5. Зависимость наблюдаемых частот Ωkот параметра связи ε в цепочке из пяти осцилляторов. Собственные частоты равны -1.8, -1.1, 0.1, 0.9, 1.9, функция связи выбрана в виде q(x)=sinx. С увеличением связи сначала осцилляторы 1 и 2 образуют кластер при ε≈0.4. Затем при ε≈0.6 появляется кластер из осцилляторов 4 и 5. При ε≈1.4 к нему присоединяется осциллятор 3. Наконец, при ε≈3 все осцилляторы синхронизируются.

9. 1. Кластеры в непрерывной колебательной среде

Образование кластеров в непрерывной колебательной среде является результатом двух противоположных факторов: неоднородности распределения собственных частот и связи, которая старается уравнять состоя­ния систем. Такая связь часто возникает вследствие диффузии, и поэтому называется диффузионной. Рассмотрим, что происходит на границе двух кластеров, имеющих разные частоты. Здесь важно различать случал дискретной цепочки и непрерывной среды.

В дискретной цепочке граница между двумя кластерами есть граница между двумя осцилляторами, имеющими разные частоты. Это просто означает, что они не захвачены: каждый колеблется со своей частотой. В отличие от этого, если в сплошной среде два ос­циллятора в двух пространственных точках имеют разные часто­ты, то между ними должен быть непрерывный переход. На пер­вый взгляд, можно просто провести непрерывный профиль частот, соединяющий эти точки. Более детальное рассмотрение показыва­ет, что это невозможно. Действительно, разные частоты отвечают разным скоростям вращения фазы. Поэтому разность фаз между точками, принадлежащими к двум кластерам, растет во времени со скоростью, пропорциональной разности частот. Следовательно, профиль фазы становится все более наклонным. С другой стороны, непрерывный крутой профиль фазы означает, что в среде образу­ются волновые структуры с все меньшей и меньшей длиной волны. Рост разности фаз между кластерами приводит к укорочению дли­ны волны со временем. Ясно, что этот процесс долго продолжаться не может — и действительно, среда находит выход из этой ситуации. Увеличивающийся градиент фазы уменьша­ется за счет пространственно-временного дефекта. Дефект обра­зуется, когда амплитуда колебаний обращается в ноль, он позволяет сохранить градиент фазы конечным.

Чтобы продемонстрировать, как возникает пространственно-временной дефект, предположим, что разность фаз между точка­ми 1 и 2, принадлежащими разным кластерам, достигла значения ≈2π. Если бы между 1 и 2 не было среды, то мы бы просто счи­тали состояния в этих точках почти идентичными. В среде, одна­ко, существует непрерывный профиль фазы между этими точками. Представляя как амплитуду, так и фазу в полярных координатах, мы можем изобразить поле окружностью. (рис. 6).

Рис. 6. Иллюстрация пространственно-временного дефекта. Начальный профиль фазы и амплитуды между точками 1 и 2 показан жирной сплошной линией. С течением времени амплитуда уменьшается и профиль меняется, как показано стрелками. В конечном состоянии (пунктирная линия) раз­ность фаз между точками 1 и 2 близка к нулю.

Рассмотрим теперь влияние связи в среде на профиль амплитуды и фазы. Ти­пичная связь — диффузионная, или, по крайней мере, имеет диф­фузионную компоненту; она стремится уменьшить разность между состояниями ближайших соседей, т.е. уменьшить разность между состояниями в точках 1 и 2. Единственная возможность добиться этого — это уменьшить амплитуду колебаний. Из рисунка 6 видно, что такое уменьшение амплитуды действительно превраща­ет профиль фазы между 1 и 2 из окружности в почти точку. В ко­нечном состоянии фазы в точках 1 и 2 почти равны, хотя изна­чально они различались на 2π [1]. После амплитуда снова нарастает, и процесс повторяется, т. е. наблюдаются биения.

10. Заключение

Анализ научной литературы показал, что явление синхронизации широко распространено в обществе, природе и технике. Мы понимаем синхронизацию как подстройку ритмов осциллирующих объектов за счет слабого взаимодействия между ними. Синхронизация зависит от двух факторов: сила связи и расстройка по частоте. Существует два режима взаимной синхронизации двух автоколебательных систем: синфазная синхронизация и в противофазе. В обоих случаях разность фаз не в точности ноль (не в точности 2π), так что говорят о фазовом сдвиге между двумя колебаниями. Взаимная синхронизация может возникнуть как в системе нескольких взаимодействующих автоколебательных систем, так и в ансамбле глобально связанных осцилляторов, дискретных цепочках или решетках, а также в непрерывных колебательных средах. При определенной силе связи возможно образование кластеров синхронизированных осцилляторов. Достаточно распространены автоколебательные системы, генерирующие хаотические сигналы, где также возможна синхронизация.

Литература

1. Пиковский А. А. Синхронизация. Фундаментальное нелинейное явление. М.:2003, 496 с.

2. Анищенко В. С. Знакомство с нелинейной динамикой: Лекции соросовского профессора: Учеб. пособие. М.:2002, 144с.

3. Ланда П. С. Автоколебания в системах с конечным числом степеней свободы. М.:1980, 356 с.

4. Романовский Ю. М. Процессы самоорганизации в физике, химии и биологии. М.:1981, 48с.

5. Данилов Ю. А. Роль и место синергетики в современной науке. www.synergetic.ru/science/index.php?article=dan2#up

6. Фрадков А. Л. Кибернетическая физика: принципы и примеры. www.ipme.ru/ipme/labs/ccs/alf/f03.pdf

7. Львова Л. В. Ритмы жизни. www.provisor.com.ua/archive/2003/N1/art_34.htm