Смекни!
smekni.com

Шпаргалки по электротехнике (стр. 10 из 16)

ЭДС е при некотором значении iв тока возбуждения можно определить по характеристике ОА хх, а падение напряжения iвSRв – по ВАХ ОВ его цепи возбуждения. Характеристика ОВ представляет собой прямую, проходящую через начало координат под углом g к оси абсцисс; при этом tgg=SRв. Из (1) имеем diв/dt = (e - iвSRв) / Lв (2). Следовательно, если разность (e - iвSRв) > 0, то производная diв/dt>0, и происходит процесс увеличения тока возбуждения iв. Установившийся режим в цепи обмотки возбуждения наблюдается при diв/dt = 0, т.е. в точке пересечения С характеристики хх ОА с прямой ОВ. При этом машина работает с некоторым установившимся током возбуждения Iвo и ЭДС Еo=Uо. Из уравнения (2) следует, что для самовозбуждения генератора необходимо выполнение определённых условий:

1) Процесс самовозбуждения может начаться только в случае, если в начальный момент (iв=0) в обмотке якоря индуцируется некоторая начальная ЭДС. Такая ЭДС может быть создана потоком остаточного магнетизма, поэтому для начала процесса самовозбуждения необходимо, чтобы в генераторе имелся поток остаточного магнетизма, который при вращении якоря индуцирует его в обмотке ЭДС Еост. Обычно поток статического магнетизма имеется в машине из-за наличия гистерезиса в её магнитной системе. Если такой поток отсутствует, то его создают, пропуская через обмотку возбуждения ток от постороннего источника; 2) При прохождении тока iв по обмотке возбуждения в её МДС Fв должна быть направлена согласно МДС остаточного магнетизма Fост. В этом случае под действием разности е – iвSRв происходит процесс нарастания тока iв , магнитного потока возбуждения Фв и ЭДС e. Если указанные МДС направлены встречно, то МДС обмотки возбуждения создаёт поток, направленный против потока остаточного магнетизма, машина размагничивается и процесс самовозбуждения не сможет начаться; 3) Положительная разность е – iвSRв необходимая для возрастания тока возбуждения iв от 0 до установившегося значения Iвo, может возникать только в том случае, если в указанном диапазоне изменения тока iв прямая ОВ располагается ниже хар-ки хх ОА. При увеличения сопротивления цепи возбуждения SRв возрастает угол наклона g прямой ОВ к оси тока Iв и при некотором критическом значении угла gкр прямая ОВ практически совпадает с прямолинейной частью хар-ки хх. В этом случае е »iвSRв и процесс самовозбуждения становится невозможным. Следовательно, для самовозбуждения генератора необходимо, чтобы сопротивление цепи возбуждения было меньше критического значения. Если параметры цепи возбуждения подобраны так, что SRв < SRвкр, то в точке С обеспечивается устойчивость режима самовозбуждения. При случайном уменьшении тока iв ниже установившегося значения Iво или увеличение его свыше Iво возникает соответственно положительная или отрицательная разность (е – iвSRв), стремящаяся изменить ток iв так, чтобы он снова стал равным Iво. Однако при SRв > SRвкр устойчивость режима самовозбуждения нарушается. Если в процессе работы генератора увеличить сопротивление цепи возбуждения SRв до значения, большего SRвкр, то его магнитная система размагничивается и ЭДС уменьшается до Еост. Если генератор начал работать при SRв > SRвкр то он не сможет самовозбудиться. Следовательно, условие SRв < SRвкр ограничивает возможный диапазон регулирования тока возбуждения генератора и его напряжения. Обычно можно уменьшать напряжение генератора, увеличивая сопротивление SRв, лишь до (0,6…0,7)Uном.

Билет №16

1. Частота вращения двигателя постоянного тока. Способы регулирования частоты вращения.

Регулирование частоты вращения двигателей независимого и параллельного возбуждения. Хорошие регулиро­вочные свойства двигателей по­стоянного тока — одна из основных причин их примене­ния в современном электроприводе, несмотря на сущест­венные недостатки, обусловленные наличием у них щеточно-коллектор­ного узла. Лучшие регулировочные свойства у двигателей независимого и параллельного воз­буждения. Регулирование частоты вращения изменением под­водимого к обмотке якоря напряжения. Как следует из n=(U-Ia*суммаr)/(ce*Ф), с изменением напряжения U частота вращения изменяется. Так как превышение но­минального напря­жения недопустимо, то этот способ позволяет изменять частоты вращения только в сторону уменьшения от номи­нальной. В двигателях мощностью до 100—120 Вт напря­жение, подводимое к обмотке якоря, можно изменять посредством потенциометра потери в котором вследствие небольшой пе­редаваемой мощности неве­лики. Если питание двигателя осуществляется через автономные выпрямители (В1 — в цепи обмотки якоря и В2— в цепи обмотки возбуждения ОВ), то регулировать частоту вращения можно посредством автотрансформатора AT, на выход которого включен выпрямитель В1. При этом напряжение возбуждения остается неизменным. Этот способ регулирования частоты вращения успешно при­меняется при мощности двигателя до 500—600 Вт. Регулирование частоты вращения изменением доба­вочного сопротивления в цепи обмотки якоря. Этот способ регулирования также позволяет изменять частоту вращения только в сторону уменьшения от номи­нальной и осуществляется посредством реостата Rдоб (см. рис. 6.20). Недостатки рассматриваемого спо­соба: значи­тельные потери на нагрев реостата (Ia^2*Rдоб) — с измене­нием сопротивления доб меняется жесткость механиче­ских характеристик двигателя (см. рис. 6.22, a). Регулирование частоты вращения изменением магнит­ного потока возбуждения. Этот способ регулирова­ния весьма экономичен, так как изменение магнитного потока осуществляется реостатом в цепи обмотки возбуждения, ток в которой у рассматриваемых двигателей в несколько раз меньше тока в цепи обмотки якоря. Способ позволяет изменять частоту вращения в сторону увеличения от номинальной. При увеличе­нии сопротивления реостата rрег (см. рис. 6.20) уменьшается ток в обмотке возбужде­ния Iв, а следовательно, и магнитный поток Ф, что вызы­вает возрастание частоты вращения якоря двигателя. вращения может превышать максимальное значение. Недостаток данного способа регулирования состоит в том, что при изменении потока Ф в значительной степени меняется жесткость механических характеристик двигате­ля (см. рис. 6.22, б). Импульсное регулирование частоты вращения. Цепь обмотки якоря двигателя независи­мого возбуждения периодически подключается к ис­точни­ку напряжения ключом К. При замыкании цепи якоря на время t1 к обмотке якоря подводится напря­жение U=Uном, ток нарастает до значения Imax (рис. 6.25, б). При размыкании ключа ток уменьшается, дос­тигая значения Imin, замыкаясь через диод VD. При следующем замыкании ключа К. ток в якоре вновь дос­тигает значения Imax и т. д. Таким образом, к цепи обмотки якоря подводятся импульсы напряжения, ам­плитудное значение которых равно напряжению U источника. Среднее напряжение, прикладываемое к дви­гателю, В, Uср=Ut1/T=gU, где t1—длительность импульса напряжения; Т—время между двумя следующими друг за другом импульсам напряжения (рис. 6.25, б); g=t1/T— коэффициент управления. Ток в обмотке якоря определяется средним значение Iср=0,5(Imax+Imin). Частота вращения двигателя при импульсном регулировании n=(gU-Ia*суммаr)/(ce*Ф). Импульсное регулиро­вание обеспечивает изменение частоты вращения лишь в сторону уменьшения от номинальной. Для снижения пульсаций тока в цепь якоря включают дроссель L. Частота работы ключа составляет 200—400 Гц. На рис. 6.25, в показана одна из возможных схем импульсного регулирования напряжения, где в качеств ключа используют тиристор VS. Включается тиристор (что соответствует замыканию ключа) подачей кратко­временного импульса от генератора импульсов ГИ на управляющий электрод УЭ. Цепь из дросселя L1 и кон­денсатора С, шунтирующая тиристор, служит для выключения последнего в интервале между двумя управ­ляющими импульсами. При включении тиристора конденсатор С перезаряжается по контуру С—VS—L1—С и к тиристору прикладывается напряжение, обратное напряжению сети. Время открытого состояния тиристора (с) определяется параметрами цепи L1С: t=p*sqrt(L1C), где L1 —индуктивность дросселя, Гн; С—емкость кон­денсатора, Ф. Среднее значение напряже­ния Uср, подводимого к обмотке якоря, регулируется изменением частоты следования управляющих импульсов. Частота вращения Д с постоянными магнитами регулируется изменением напряжения на обмотке якоря (реостатом Rдоб или импульсным методом) только в сторону уменьшения от номинального значения. Для из­менения направления вращения якоря (реверса) Д необходимо изменить направление тока в обмотке якоря либо в ОВ. При одновременном изменении тока в обеих обмотках якорь не изменяет направления вращения. В Д с постоянными магнитами реверс осуществляется изменением полярности клемм обмотки якоря.

2. Измерительные трансформаторы.

Измерительные трансформаторы. Применяют для расширения пределов измерения измерительных приборов переменного тока. Кроме того, они позволяют полностью изолировать эти приборы от цепи высокого напряжения, в которой производится измерение. Первичную обмотку измерительных трансформаторов включают в сеть, а ко вторичной обмотке подключают измерительные приборы. В сетях высокого напряжения один конец вторичных обмоток и стальные кожухи измерительных трансформаторов заземляют. Измерительные трансформаторы подразделяют на трансформаторы напряжения и трансформаторы тока. Трансформаторы напряжения используют для включения вольтметров и параллельных цепей измерительных приборов – ваттметров, счетчиков, фазометров и т. д. Трансформаторы тока применяют для включения амперметров и последовательных цепей других измерительных приборов. Маркировка зажимов трансформатора напряжения аналогична маркировке силовых трансформаторов. Трансформаторы тока маркируются иначе – зажимы первичной обмотки, включаемой последовательно в линию, обозначают буквами Л1 и Л2, а соответствующие зажимы вторичной обмотки – буквами И1 и И2. Маркировка зажимов измерительных трансформаторов дает возможность правильно включать «полярные» приборы. Измерительные приборы, работающие в комплекте с определенными измерительными трансформаторами, градуируют непосредственно в единицах измеряемых величин. В этом случае на шкале амперметра делают надпись «С тр. Тока I1/I2», а на шкале вольтметра - «С тр. напряжения U1/U2». Трансформаторы напряжения работают в режиме, близком к холостому ходу. Отличной особенностью работы трансформатора тока является последовательное соединение его первичной обмотки с потребителями энергии: значение первичного тока определяется I1 определяется только током потребителя. В номинальном режиме напряжение на зажимах вторичной обмотки трансформатора тока составляет несколько вольт ввиду малости сопротивлений последовательных цепей измерительных приборов. Этот режим близок к короткому замыканию. Пример включения измерительных приборов совместно с измерительными трансформаторами представлен на рисунке