Смекни!
smekni.com

Шпаргалки по электротехнике (стр. 5 из 16)

Механическую характеристику (М) можно построить по кривой М(s), используя соотношение:

Устойчивая работа двигателя возможна на участке

(М<Мm), где проявляется свойство саморегулирования двигателя.

Номинальный момент определяет допустимый момент на валу двигателя при длительной неизменной нагрузке. Тепловой режим двигателя нормального исполнения(нагрев обмотки, вентиляция и т. д.) рассчитывают для этой нагрузки. Отношение Мm/Мном, называемое перегрузочной способностью, обычно выбирают равным 2 – 2,5 с учетом возможности кратковременных ударных нагрузок при пониженном напряжении в сети.

Рабочие характеристики показывают зависимость эксплуатационных параметров машины от мощности на валу двигателя Р2; к этим параметрам относят ток, активную мощность, КПД, скорость ротора и коэффициент мощности двигателя.

Рабочие характеристики АД изображены на рис.

По осям координат отложены относит. значения тока статора I1, скорости ротора и мощности Р1, выраженные в долях от номинальных величин I1ном, скорости поля и номинальной мощности Р2ном.В реж. х.х. , когда М~0, ток I1=I1х. Значение тока I1х зависит от магнитного

сопротивления воздушного зазора между статором и ротором. Поэтому зазор делают небольшим – порядка десятых долей миллиметра. Тем не менее ток I1х=(0,2..0,5)I1ном в зависимости от мощности двигателя, что на порядок больше по сравнению с относительным значением тока I1х у трансформаторов. Ток I1х имеет активную составляющую, связанную с потерями в магнитопроводе и в обмотке статора.По мере роста нагрузки на валу увеличивается ток статора, в основном его активная составляющая. Коэффициент мощности

при х.х. определяется мощностью потерь в магнитопроводе:

Обычно cosf1х имеет значение 0,2..0,3, что указывает на недопустимость длительной работы двигателя без нагрузки. При номинальной нагрузке cosf1=0,7..0,8.

КПД:

при отсутствии нагрузки равен 0. по мере увеличения мощности Р2 КПД повышается. При больших нагрузках рост КПД замедляется, затем КПД начинает уменьшаться, т.к. потери в обмотках пропорциональны квадрату токов, а зависимость токов от мощности Р2 близка к линейной.

2)Электроизмерительные приборы с электростатическим измерительным механизмом. Электростатический механизм состоит из двух (и более) металлических изолированных пластин, выполняющих роль электродов. На неподвижные пластины подается потенциал одного знака, а на подвижные пластины – потенциал другого знака. Подвижная пластина вместе с указателем укреплена на оси и под действием сил электрического поля между пластинами поворачивается. При постоянном напряжении U между пластинами вращающий момент пропорционален зарядам Q=C*U на пластинах: Мвр=k*Q^2=k*(C*U)^2. При синусоидальном напряжении u=Um*sinwt подвижная часть механизма реагирует на средний вращающий момент, где U – действующее напряжение: Мвр.ср.=k2*U^2.Электростатические приборы, в которых используется электростатический механизм, применяют исключительно в качестве вольтметров постоянного и переменного напряжений. Из выражения для Мвр.ср. следует, что угол отклонения указателя электростатического прибора пропорционален квадрату напряжения, т.е. шкала прибора должна быть квадратичной. Однако подбором формы и размеров электродов получают практически равномерную шкалу. Электростатические вольтметры отличаются малым потреблением энергии, широким частотным диапазоном, нечувствительностью к внешним магнитным полям и колебаниям температуры, их показания не зависят от формы кривой напряжения. К недостаткам этих приборов следует отнести сравнительно низкую чувствительность. Кроме того, они требуют электростатического экранирования, т.к. на их показания оказывают влияние внешние электрические поля. Для расширения пределов измерения электростатических вольтметров используют емкостные и резистивные делители напряжения(рис.

Билет №8

1. Конструкция и принцип действия машины постоянного тока. ЭДС машины постоянного тока.

По конструктивному выполнению машина постоянного тока подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения - на статоре. Основное отличие заключается в том, что машина постоянного тока имеет на якоре коллектор, а на статоре кроме главных полюсов с обмоткой возбуждения- добавочные полюсы, которые служат для уменьшения искрения под щетками. На статоре расположены главные полюсы с катушками обмотки возбуждения и добавочные полюсы с соответствующими катушками. Главные полюсы выполняют шихтованными, а добавочные- массивными или также шихтованными. Катушки главных и добав. полюсов изготовляют из изолированного медного провода. Расположенную на полюсе обмотку иногда разбивают на секции для лучшего ее охлаждения. Сердечник якоря собирают из изолированных листов электротехнической стали. Обмотка якоря обычно состоит из отдельных, заранее намотанных, якорных катушек, которые обматывают изоляционными лентами и укладывают в пазы сердечника якоря. Обмотку выполняют двухслойной. Коллектор обычно выполняют в виде цилиндра, собранного из клинообразных пластин твердотянутой меди; между пластинами располагают изоляционные прокладки. По цилиндрической части коллектора скользят щетки, установленные в щеткодержателях. Щетки представляют собой прямоугольные бруски, изготовленные путем прессовки и термической обработки из порошков графита, кокса и др. Они предназначены для соед. коллектора с внешней цепью и прижимаются к поверхности коллектора пружинами.

Принцип действия. Машина постоянного тока имеет обмотку возбуждения, расположенную на явно выраженных полюсах статора. По этой обмотке проходит постоянный ток Iв, который создает магнитное поле возбуждения Фв. На роторе расположена двухслойная обмотка, в которой при вращении ротора индуцируется ЭДС. Т.о. , ротор машины постоянного тока является якорем. При заданном направлении вращения якоря направление ЭДС, индуцируемой в его проводниках, зависит только от того , под каким полюсом находится проводник. При вращении якоря проводники обмотки перемещаются от одного полюса к другому;

ЭДС, индуцируемая в них, изменяет знак. Однако количество проводников, находящихся под каждым полюсом, остается неизменным. При этом суммарная ЭДС, индуцируемая в проводниках, находящихся под одним полюсом , также неизменна по направлению и приблизительна постоянна по вел-не. Эта ЭДС снимается с обмотки якоря с помощью скользящего контакта, включенного между обмоткой и внешней цепью. Обмотка якоря выполняется замкнутой, симметричной (рис С-8.1,б)

2. Асинхронный тахогенератор.

Своим устройством асинхронный тахогенератор не отличается от асинхронного исполнительного двигателя с полым немагнитным ротором. Полый ротор тахогенератора изготовляют из сплава с повышенным удельным сопротивлением не зависящим от температуры.

У обмотки статора АТГ есть две 1-я ОВ, 2-я –генераторная обмотка. Считаем ось ОВ продольной d-d. Рассмотрим процессы происходящие в АТГ при неподвижном роторе (n=0). При включении обмотки возбуждения в сеть перем тока напр-ем U1 и частотой f1 возникает МДС Fв и в магнитопроводе генератора наводится пульс магнитный поток Фв направленный по оси d-d. Пронизывая полый ротор, поток наводит в нем ЭДС Етр, назыв трансформаторной. В ГО поток Фв не наводит ЭДС т.к ось обмотки q-q расположена под углом 90 эл. градусов к оси обмотки возбуждения d-d. Под действием Етр в стенках полого стакана возникнут токи I2тр, которые благодаря повышенному актив сопротивлению ротора практически совпадают по фазе с Етр. Токи I2тр создают МДС ротора F2d, направл по продольной оси встречно МДС Fв возбуждения . в результате взаимод Fв и F2d созд-ся результ магн поток по продольной оси Фd пульсирующий с частотой тока сети f1. Если ротор АТГ вращать с частотой n, то процесс наведения ЭДС не изменяется. По оси ОВ действ пульс ток ОВ. Но проводники ротора при вращении пересек магнит силовые линии этого потока и в них дополнит навод-ся ЭДС вращения.от действия этогг ЭДС возникает ток и магнитный поток Фг который наводит в ОГ генераторную ЭДС. Фг=>Ег4,44f1wогФг. АТГ можно использовать в качестве датчика ускорений для получения сигнала пропорционального ускорению вала.

Билет №9

1. Конструкция и принцип действия синхронной машины.

Статор СМ имеет такое же устройство, как и статор АМ. Трехфазная или m-фазная обмотка статора СМ выполняется с таким же числом полюсов, как и ротор и называется обмоткой якоря. Сердечник статора вместе с обмоткой наз-ся якорем. Ротор СМ имеет обмотку возбуждения, питаемую через 2 контактных кольца и щетки постоянным током от посторонноего источника. В качестве источника чаще всего служит ГПТ относительно небольшой мощности (0.3-3% от мощности СМ), который называется возбудителем и устанавливается обычно на одном валу с СМ. Назначение ОВ - создание в машине первичного маг.поля. Ротор вместе со своей ОВ называется индуктором. При изготовленни СМ принимаются меры к тому, чтобы распределение индукции поля возбуждения вдоль окр.статора было по возможности близко к синусоидальному. Если ротор СМ привети во вращение с нек.скоростью n и возбудить его, то поток возбуждения Ф будет пересекать проводники обмотки статора и в фазах последней будут индуктироваться ЭДС с частотой f1=pn=pnM/60. ЭДС статора составляют симметричную трехфазную систему ЭДС, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагрузиться симметричной системой токов, машина при этом будет работать в режиме Г. При нагрузке обмотка статора создает такое же по характеру вращающееся маг.п., как и обмотка статора АМ. Это поле статора вращается в направлении вращения ротора со скоростью n1=f1/p следовательно n1=n. Поля статора и ротора вращаются с одинаковой скоростью общее вращающееся поле как и в АМ. Поле статора (якоря) оказывает воздействие на поле ротора (индуктора) и называется полем реакции якоря. СМ может работать и качестве Д, если подвести к обмотке ее статора 3-фазный ток из сети. В этом случае в результате взаимодействия маг.полей поле статора увлекает за собой ротор. При этом ротор вращается в туже сторону и с такой же скоростью, что и поле статора. Из формулы следует, что чем больше число пар полюсов, тем меньше должна быть ее скорость вращения для получения заданной частоты. По своей конструкции СМ бывают явнополюсные и неявнополюсные