Смекни!
smekni.com

Геометрия молекул. Теория ЛЭП. Элементы стереохимии (стр. 2 из 3)

Все электронные пары кратной связи занимают одно общее координационное место. В этом смысле они подобны одной паре большего объёма.

Существуют и более сложные пространственные конфигурации, однако они важны уже для экзотических, специальных, случаев.

Вот и все основные правила.

Пространственное распределение электронных пар в оболочке центрального атома во всех случаях полностью согласуется с этой простой моделью. Этот вывод детально проверен теоретически.

Число электронных пар в оболочке атома целое, оно ограничено, оно определяется валентным состоянием атома.

Обратимся к примерам, иллюстрирующим прогнозы теории ЛЭП.

Рассмотрим соединения разных групп Периодической Системы.

1)У молекул соединений элементов 2-й группы реализуется самая простая структура, порождаемая валентной конфигурацией центрального атома вида MX2.

У самого центра 2 валентных электрона, а 2 лиганда предоставляют для -связывания (“в совместное владение” с центром) по 1 электрону. Все эти электроны по правилам ЛЭП следует приписать к центру. Это 2 валентные пары X. Их максимальное отталкивание порождает линейную структуру. Таковы в газовой фазе молекулы BeH2, BeCl2, HgCl2, ... . Все три атома расположены вдоль одной оси.

2) У молекул соединений элементов 3-й группы конфигурация центрального атома содержит 3 валентных электрона, и от каждого лиганда на -связывание поступает ещё 1 валентный электрон. Оболочке центрального атома следует приписать всего 6 валентных электронов – 3 пары. Их отталкивание порождает молекулярную структуру типа плоского треугольника. Общая формула такой системы MX3 (полная структура). Таковы молекулы BF3 (газовая фаза), AlCl3 (газовая фаза).

3) У молекул соединений элементов 4-й группы центральный атом содержит 4 валентных электрона. В спин-спаренном состоянии электронной оболочки молекулы может быть 4 или 2 лиганда. В зависимости от их числа возможны 2 варианта структуры.

3.1. В четырёхвалентном состоянии центра при четырёх лигандах в поле центра всего 8 связывающих электронов Общая формула такой системы MX4 (полная структура). Четырём парам отвечают тетраэдрические структуры молекул типа СCl4, SiFl4, GeCl4.

3.2. В двухвалентном состоянии центра суммарное число электронов при одновалентных лигандах равно 6, из них 2 пары обслуживают 2 -связи с лигандами X, и 1 пара холостая - пара E. Такую структуру можно описать формулой MX2E (осколочная структура). Для размещения всех пар необходимо 3 координационных места. Это осколок треугольной структуры. 1 место-для холостой пары, и 2 места для лигандов. Основа структуры – плоский треугольник. Холостая пара отталкивает связывающие пары. Геометрия молекулы угловая, но валентный угол меньше 1200 из-за большего размера холостой пары (валентной пустышке нужно больше места в пространстве, и она расталкивает связывающие “трудовые” пары – смешно, но таков закон природы !). Таковы в газовой фазе молекулы SnCl2, PbCl2, GeCl2. Их структуры представляют из себя осколки “треугольника”. Её так и называют – осколочной.

4) В молекулах соединений элементов 5-й группы имеется несколько возможностей. У центрального атома 5 валентных электронов. Если он 5-валентный, то ещё 5 поступают от 5 лигандов. Получающиеся 5 пар занимают 5 координационных мест. Такую структуру можно описать формулой MX5 (полная структура). Геометрия молекул этих соединений отвечает тригональной бипирамиде. Таковы PF5, AsCl5, SbBr5.

Здесь возникает качественное геометрическое различие лигандов. Два из них назовём аксиальными и три экваториальными. Соответствующие индексы введём для связывающих пар Xaи Xe, обслуживающих -связи с лигандами (см. рис.в конце текста). Экваториальные положения предпочтительны для размещения и неподелённых пар и кратных связей, и более объёмных заместителей.

Если центральный атом– элемент 5-й группы лишь трёхвалентен, то от каждого лиганда в оболочку центра поступает 1 электрон, всего же оболочке центра приписывам 8 электронов – 4 пары. Три пары связывающие (X) и одна неподелённая E. Такую структуру можно описать формулой MX3E (осколочная структура). Все пары ориентированы к вершинам тетраэдра. Одно место занято парой-“пустышкой”, оттесняющей связи и искажающей “правильную” структуру. Лиганды размещены лишь в трёх положениях из пяти. Основа геометрии ядерного остова – тригональная пирамида, а с точки зрения теории ЛЭП она представляет собой осколочный тетраэдр. Таковы NH3, PCl3, PF3, AsCl3, SbBr3 (а также-с центром из 6-й группы-изоэлектронный ион H3O+).

(Координационное место пустышки – понятием молекулярная структура игнорируется - как бы не в счёт, хотя именно она определяет структуру).

7) Молекулы соединений элементов 6-й группы. У центрального атома 6 валентных электронов. К шестивалентному центру поступают ещё 6 от 6 лигандов. Эти 6 пар требуют 6 координационных мест. Формула валентной оболочки центрального атома MX6 (полная структура). Геометрия таких молекул октаэдрическая. Таковы SF6, SeCl6... .

Если же центральный атом из 6-й группы лишь 4-х валентен, то формула оболочки центра MX4E (осколочная структура). Ей отвечает геометрия бисфеноида. Центру следует приписать 10 электронов - 5 пар, и основная структура для них – тригональная бипирамида с её 5-ю координационными местами. В 4-х координационных местах размещены лиганды, а их, как всегда, теснит пятая пара–“пустышка”. Она занимает более “комфортное” экваториальное место. На экваторе остается ещё два места, но валентный угол между ними меньше 1200, - их потеснит холостая пара. Два оставшихся атома занимают аксиальные положения, и поскольку они тоже оттеснены пустышкой от оси, то валентный угол между ними меньше 1800. Бисфеноид напоминает коромысло, поперёк которого повисли две руки. Согласно теории ЛЭП это осколок тригональной бипирамиды. Таковы структуры SF4, SeCl4, TeCl4, ...

9) Наконец, возможен и двухвалентный атом 6-й группы. Два лиганда добавят два электрона, и в поле центра окажется 8 электронов. Образуя 4 пары, они порождают 4 координационных места в вершинах тетраэдра. Формула оболочки центра MX2E2 (осколочная структура). 2 пары занимают 2 вершины тетраэдра, и 2 лиганда располагаются в 2 оставшихся вершинах, а валентный угол вновь уменьшен по сравнению с тетраэдрическим. Он меньше 104028’. Эти структуры угловые. Таковы молекулы H2O, H2S, SCl2, SeCl2, TeCl2, ...

10) Структуры с 7-ю валентными парами у центра разнообразны. Варианты основной геометрии существенно меняются в зависимости от центрального атома или иона. Единого простого полиэдра, подходящего для построения полной структуры на основе центра из 7-й группы, уже нет. Единственный как бы простой случай полной структуры – у молекулы IF7 имеет место структура пентагональной бипирамиды. А вот у XeF6 также 7 пар в валентной оболочке центра, но уже иная структура – одношапочного октаэдра (см. рис.)

Наглядны и достаточно стандартны осколочные структуры. К ним и обратимся.

Если в поле элемента 7-й группы попадает 5 одновалентных лигандов, получаются 6 валентных пар. 1 из них холостая. Формула конфигурации центра MX5E. Основа геометрической структуры – осколок октаэдра. В его “ущербной“ аксиальной вершине 1 холостая пара, оттесняющая от идеальных положений прочие 5 связывающих пар. Получается структура квадратной пирамиды, или точнее “квадратного зонтика”, поскольку центральный атом лежит ниже плоскости четырёх лигандов.

Таковы ClFl5; BrCl5; BrF5; ...

Если в поле элемента 7-й группы попадает 3 одновалентных лиганда, приходим к 5 валентным парам. Две из них холостые. Формула конфигурации центра MX3E2. Основа геометрической структуры – осколок тригональной бипирамиды (или двойной осколок бисфеноида). В его “ущербных” вершинах – экваториальные холостые пары, теснящие 3 связывающих. Две аксиальные пары отклонены от общей с центром оси в одну и ту же сторону. Получается структура буквы Т с валентными углами менее 900. Таковы ClFl3; BrCl3; BrF3 ...

11) Не являются исключением для теории ЛЭП соединения инертных газов. Есть смысл рассматривать осколочные структуры типа молекул XeF2, XeF4, ... их геометрия определяется теми же правилами.

В оболочку атома Xe в молекуле XeF2 попадает 5 пар. Основа структуры – осколок тригональной бипирамиды. 3 неподелённые пары занимают экваториальные положения, располагаясь в трёх вершинах в плоскости равностороннего треугольника. Связывающие пары связей XeF менее объёмны, и занимают аксиальные положения на одной оси с центром. Ядерный остов линейный, но истинная основа геометрии это молекулы – тригональная бипирамида.

В оболочке атома Xe в молекуле XeF4 содержится 6 пар. Основа структуры – октаэдр. 2 неподелённые пары располагаются на одной оси с центром. Менее объёмные связывающие пары связей XeF занимают 4 положения в общей плоскости с центром. Молекула квадратная, но её ЛЭП-основа – октаэдр.

В оболочке атома Xe в молекуле XeF6 содержится 7 пар. Основа этой структуры в теории ЛЭП – так называемый одношапочный октаэдр. Это менее симметричная структура, но тем не менее, у неё сохраняется ось симметрии третьего порядка, проходящая через ось орбитали непо делённой пары, а также через центры двух плоскостей, в которых лежат треугольники, образованные двумя тройками атомов лигандов F’ и F”.

12) Имеются соединения и с большим числом электронных пар...

Их примеры приведены в замечательной классической монографии Рональда Гиллеспи “Геометрия молекул”, а также в более новой монографии Р. Гиллеспи и И. Харгиттаи “Модель отталкивания электронных пар валентной оболочки и строение молекул”.