Смекни!
smekni.com

Ароматичні вуглеводні сполуки (стр. 2 из 5)

Повільно

–––––––- sp3-Гібридизований атом карбону

p-Комплекс s-Комплекс (аренонієвий катіон)

4 Повернення ароматичності. Оскільки втрата ароматичності енергетично невигідна, система прагне повернути її найпростішим шляхом, а саме – відщепленням протону Н+ від s-комплексу. Внаслідок цього два електрони, що утворювали зв¢язок С-Н, приєднуються до тих чотирьох p-електронів, які залишалися в s-комплексі. Тому замкнута шестиелектронна система поновлюється і молекула переходить в ароматичний стан:


Швидко

–––––––––- + H+.

s-Комплекс Продукт Протон

5 Утворення побічного продукту. Відщеплений протон взаємодіє з негативно зарядженим аніоном А-, що утворився при розриві зв¢язків у молекулі реагенту на перший стадії:

Н+ + А- –––––––- HA.

Побічний продукт

У загальному вигляді механізм реакції електрофільного заміщення в аренах можна зобразити схемою


+ Е+ Û –––-

Субстрат Електрофіл p-Комплекс

–H+

–––> –––––––>

s-Комплекс Продукт

Розглянемо найважливіші реакції електрофільного заміщення SE.

1 Галогенування бензену проходить тільки за наявності каталізаторів – так званих кислот Льюїса (речовин, здатних зв¢язувати вільну електронну пару): AlCl3, FeCl3, AlBr3, FeBr3, SnCl4, TiCl4, BF3. Практичного значення набули реакції хлорування та бромування, тому що реакція з хімічно активним F2 проходить деструктивно, а з І2 – дає надзвичайно малий вихід завдяки низькій реакційній здатності йоду.

80оC

+ Br2 –––––- + HBr,

AlВr3

Бромбензен

25оC

+ Cl2 ––––––––- + HCl.

AlCl3

2 Нітрування. Бензен реагує дуже повільно навіть з концентрованою HNO3 при нагріванні, але при дії на нього нітрувальною сумішшю (суміш концентрованих HNO3 i H2SO4) досить легко перетворюється на нітропохідні.

Електрофільною частинкою є нітроїл-катіон NO2+, який утворюється під впливом сірчаної кислоти:


HO-NO2(к) + 2H2SO4 (к) Û 2HSO4- + H3O+ + NO2+,


50оС

+ HO-NO2(к) --------- + H2O.

H2SO4 (к)

Бензен Нітробензен

3 Сульфування. Бензен сульфується при звичайній

температурі олеумом (розчин SO3 у 100% H2SO4) або чадною сірчаною кислотою, яка дає SO3 внаслідок встановлення рівноваги:

2H2SO4 Û SO3 + H3O+ + HSO4-.

Отже, електрофільним реагентом є сульфур(ІV) оксид, оскільки за рахунок трьох електронегативних атомів оксигену, які відтягують на себе електронну густину зв¢язків S=О, на атомі сульфуру виникає великий дефіцит електронної густини і достатньо значний частковий позитивний заряд (3d+). Реакція сульфування належить до оборотних процесів: при оброблюванні продукту перегрітою водяною парою проходить зворотна реакція – десульфування:

SO3×H2SO4, 250C

––––––––––––––––-

-––––––––––––––––.

H2O, 1500C (-H2SO4)

Бензен Бензенсульфонова кислота

4 Алкілування – реакція Фріделя-Крафтса – введення алкільної групи у бензенове кільце за наявності каталізаторів (кислот Льюїса) з утворенням гомологів бензену. Як алкілувальний реагент використовують галогеналкани СnH2n+1Hal, спирти CnH2n+1OH, алкени CnH2n, наприклад:


80о

+ CH3Cl ––––––- + HCl.

AlCl3

Бензен Толуол

Каталізатор ініціює утворення електрофілу за схемою

СН3Cl + AlCl3 - CH3+ + [AlCl4]-.

Реакції з алкенами і спиртами каталізуються найчастіше кислотами

0оC

+ СH3-CH====CH2 –––-,

HF

Ізопропілбензен (кумол)

OH 60оC

+ СH3-C-CH3 –––––––––-.

OH H3PO4 Трет-бутилбензен

5 Ацилювання – заміщення атома гідрогену в бензеновому кільці на ацильну групу RCO. Ацилювальним реагентом є галогенангідриди чи ангідриди карбонових кислот; при цьому одержують змішані ароматично-аліфатичні кетони.

O 80оC

+ СН3-С --------- + HCl

Cl AlCl3

Бензен Хлорацетил Ацетофенон

O

CH3-C 80оC.

+ O --------- + CH3COOH

CH3-C AlCl3

О

Бензен Ангідрид оцтової кислоти Ацетофенон

ІІ Реакції приєднання АЕ

Реакціі приєднання для ароматичних вуглеводнів не характерні, оскільки вони супроводжуються порушенням ароматичності і вимагають великої витрати енергії. Тому ці реакції проводяться в дуже жорстких умовах:

1 Гідрування (відновлення)


200оC, 50 Атм

+ 3Н2 ––––––––––––- .

Ni

Бензен Циклогексан

Гідрування використовується для одержання циклогексану, який є, по-перше, добрим розчинником, а по-друге, – вихідною речовиною при добуванні адипінової кислоти, а з неї – капролактаму.

Реакція оборотна: при 3000С і нормальному тиску проходить зворотний процес.

2 Хлорування при інтенсивному ультрафіолетовому опромінюванні:


УФ

+ 3Cl2 –––––––––-

Гексахлорциклогексан (гексахлоран)

Гексахлоран – сильна харчова, контактна і дихальна отрута, застосовується як інсектицид: смертельна доза для мух становить усього 10-12 г.

ІІІ Реакції окиснення

Відмінною рисою ароматичних вуглеводнів є їх стійкість по відношенню навіть до сильних окисників. У звичайних умовах на них не діють ні концентровані кислоти, ні хромова суміш, ні розчин KMnO4. Однак у жорстких умовах вони піддаються окисненню:

О О

500оC НС С НС С О

+ О2 ––––––- О––––- О

V2O5 НС С НС С

Бензен -2СО2 О О

-2Н2О


Малеїновий ангідрид Малеїнова кислота

Малеїновий ангідрид і малеїнова кислота використовуються у виробництві поліестерних смол, склопластику і лакофарбових матеріалів.

У живих організмах бензен під дією ферментів окиснюється до дуже шкідливої сполуки – муконової кислоти:


+ 2О2 –––––––- HOOC-CH=CH-CH=CH-COOH.

Бензен Фермент Муконова кислота


ВПЛИВ ЗАМІСНИКІВ НА РЕАКЦІЙНУ ЗДАТНІСТЬ АРОМАТИЧНИХ ВУГЛЕВОДНІВ

Найважливішим чинником, що визначає хімічні властивості речовин, є розподілення електронної густини в молекулах, яке залежить від взаємного впливу атомів і атомних груп. Якщо молекула містить тільки s-зв¢язки, взаємний вплив здійснюється через індуктивні ефекти, а в спряжених системах виявляється дія мезомерного ефекту.