Смекни!
smekni.com

Качество воды (стр. 10 из 12)

С учетом расхода воды на промывку, а также для восполнения сокращенной подачи воды фильтрами за время простоя на промывке и в течение сброса первого фильтрата расчетную площадь фильтров в м2 определяют из выражения

( 4.2 )

где Q – полезная производительность станции в м3 / сутки, определяемая максимальной суточной подачей воды потребителям ;

T – продолжительность в ч работы станции в течение суток ( обычно Т = 24 ) ;

n – расчетное число промывок каждого фильтра за сутки при нормальном режиме работы станции ( обычно n = 2 – 3 ) ;

w – интенсивность промывки в л/сек м2 ( таблица 4.3 )

t1 – продолжительность промывки в ч ;

t2 – время простоя фильтров в связи с промывкой , t2 = 0,33 – 0,5

t3 – продолжительность сброса первого фильтрата t3 = 0,17 ч.

Таблица 4.3

Основные параметры промывки

Тип фильтра и загрузки е в % w в л/сек м2 t1в мин
Однопоточные с песчаной загрузкой :dмакс = 1,2мм; dэ = 0,7- 0,8мм 45 12 - 14
dмакс = 1,5мм; dэ = 0,9 – 1 мм 30 14 -16 6 –5
Двухслойные: 50 13 - 15 7 – 6
Двухпоточные:
Взрыхление 6 - 8 2 – 1
основная промывка 30 13 - 15 6 – 5
промывка дренажа 10 - 12 2 – 1

однопоточных фильтров t2 = 0,33 , для двухпоточных – 0,5 ч ;

Расчетная производительность фильтров в м3/сутки при нормальном режиме их работы определяется по формуле.

Qф = ТFvр.н ( 4.3 )

Во время пополнения пожарного запаса станция работает при нормальном режиме, но с повышенной скоростью фильтрации : vпож < vр.ф. Добавочный расход в м3/ч который должны пропустить фильтры, определяют по формуле

qпож = Wпож / tпож ( 4.4 )

где Wпож – сохраняемый в резервуарах пожарный запас воды в м3;

tпож – продолжительность пополнения пожарного запаса, принимаемая в соответствии с требованиями СниП равной 24 – 36 ч в зависимости от характера объекта водопотребления.

Проверка достаточности площади фильтров на работу в период пополнения пожарного запаса производится по формуле

( 4.5 )

Число фильтров. При назначении числа фильтров следует обеспечить экономичность решения и надежность работы фильтровальной установки.

По экономическим соображениям количество фильтров на станциях ориентировочно определяется из выражения

( 4.6 )

Число фильтров следует уточнять с учетом соотношения производительностей первой и второй очередей строительства станции. На любом этапе эксплуатации должно быть не менее двух фильтров прм производительности станции до 2000 м3/сутки и не менее трех – при большей производительности. Это условие обеспечивает надежность работы установки для малых и средних станций ; оно обычно оказывается решающим и при определении общего числа фильтров для полного развития станции. так как размеры фильтров на обоих этапах строительства должны быть одинаковыми.

Надежность работы установки обеспечивается не только определенным минимумом параллельно работающих фильтров, но и созданием условий для качественного функционирования таких ответственных элементов скорых фильтров, как распределительная, сборная системы и т.п.

Поэтому максимальная площадь отдельных фильтров обычно не превышает 100 – 120 м2, а фильтры площадью более 30 – 40 м2 выполняются с центральным каналом ( шириной 0,7 – 0,8 м), разделяющим фильтр на две равные части.

Высотное решение фильтров. Высота фильтра Нф складывается из высот слоев загрузки, слоя воды над загрузкой и высоты бортов.

Высота поддерживающего слоя ( Lгр ), размещаемого на дне фильтра и состоящего из слоев гравия или щебня, определяется суммой высот его слоев из зерен различной крупности, а именно ( считая сверху ) : слоя зерен крупностью 2 – 4 мм – 50 мм ; слоев 4 – 8 мм и 8 – 16 мм по 100 мм ; слоя с крупностью зерен 16 – 32 мм – высотой на 100 мм выше отверстий распределительной системы, но не ниже верха распределительных труб.

Высота фильтрующего слоя ( Lо ) принимается по таблице 4.2 или на основании расчетов фильтрующей загрузки.

Слой воды над загрузкой фильтра принимается из условия предупреждения воздушного засорения фильтра ; обычно его высота Lв > 2 м.

Высота бортов при стабильном расчетном горизонте воды ( как правило, когда число фильтров N > 6 ) должна быть равна Нб = 0,3 – 0,5м.

При работе фильтров с постоянной скоростью фильтрования высота бортов увеличивается для периодического приема части поступающей на станцию воды во время промывки одного из фильтров.

Необходимая дополнительная высота бортов в м определяется из условия

( 4.7 )

где Wнак – объем воды в м3, накапливаемый за время промывки одного фильтра

Wнак = F1vрнt2 ;

F1 – расчетная площадь одного фильтра в м2.

Расчет параметров и числа фильтров для проектируемой водоочистной станции :

а) необходимая площадь фильтров

Расчетная производительность фильтров определяем по формуле 4.3

Qф = 24∙ 70 ∙ 6 = 10 080 м3 / сут

Число фильтров определяем по формуле 4.6

= 4 штуки

Глава 5

Физико-химические методы обеззараживания воды.

5.1 Общие положения

Тепловой способ. Кипячение воды в течение 12-20 мин убивает все неспорообразующие микроорганизмы. Для уничтожения спор применяют нагрев воды до 1200С под давлением или дробную стерилизацию воды – ее кипятят в течение 15 мин, охлаждают до 350С, выдерживают при этой температуре 2ч для прорастания спор и снова нагревают до кипения.

Действие ультрафиолетового излучения. Вода, длительное время находящаяся на солнечном свету, освобождается от патогенных микроорганизмов. Облучение воды ультрафиолетовыми лучами хорошо обеззараживает воду, свободную от взвешенных и коллоидных примесей.

Действие ионизирующего излучения. По литературным данным, облучение воды рентгеновскими лучами, γ- и β- излучателями обеззараживает воду. Эти методы обеззараживания воды пока не нашли практического применения.

Действие ультразвуковых колебаний убивает большинство микроорганизмов. Интенсивность ультразвукового излучения должна быть не менее 2 вт/см2 при продолжительности озвучивания не менее 5 мин.

Обеззараживание воды фильтрованием. Большинство патогенных микроорганизмов (за исключением вирусов) имеет размер более 1-2 мк. Поэтому фильтрованием воды через фильтры с размерами пор менее 1 мк можно освободить ее от микроорганизмов. Метод этот пригоден только для обеззараживания подземных или хорошо осветленных вод с содержанием взвешенных веществ менее 2 мг/л, так как при большем содержании взвеси последняя быстро закупоривает поры фильтра, что приводит к резкому снижению его пропускной способности.

В качестве обеззараживающих используют так называемые ультрафильтры из микропористой керамики или фарфора (фильтры Беркефельда, Шамберлена и др.), фильтры с асбестоцеллюлозными фильтрующими пластинами (фильтры Зейца), мембранные ультрафильтры и др.

Ниже рассматриваются методы обеззараживания, получившие наибольшее распространение в практике очистки воды.

5.2 Обеззараживание воды озоном.

Это наиболее эффективный метод обеззараживания воды. Однако он весьма дорог.

Схема современной озонаторной установки с глубоким осушением воздуха, охлаждением, вымораживанием и поглощением оставшейся влаги абсорбентами показана на рис. 5.1.

Воздух забирается через жалюзийную решетку и проходит через кассетный воздушный фильтр 1. Очищенный от пыли воздух сжимается компрессором 2 и направляется во второй кассетный фильтр 3, в котором очищается от мельчайших капелек масла, попадающих в воздух в компрессоре. По выходе из фильтра часть воздуха направляется в смеситель 4 фильтрованной станции для интенсификации смешивания озона с водой; остальной воздух идет на осушку.

Первый этап осушки воздуха происходит в оросительном холодильнике 5 вследствие конденсации влаги. Компримированный воздух из компрессора имеет температуру 40-500С. при его расширении и охлаждении в оросительном холодильнике выделяется часть влаги. Вода, орошающая трубки холодильника, по которым движется воздух, отводит выделившееся тепло.

Охлажденный воздух поступает в кожухотрубный холодильник 6, в котором воздух поступает по трубам, охлаждаемым кипящим фреоном. Последний поступает от специальной установки 7. Влага из воздуха осаждается в виде инея на поверхности труб и удаляется при остановке и отогревании холодильников. Затем воздух пропускается через абсорбер 8, где остатки влаги сорбируются силикагелем или активной окисью алюминия. Для предотвращения нагрева за счет тепла, выделяющегося при сорбции воды, сорбент в абсорберах охлаждается водой, протекающей по змеевику, который расположен в слое сорбента.

Регенерацию сорбента осуществляют продувкой его горячим воздухом (200-2600С), подаваемым от электрокалорифера 9.