Смекни!
smekni.com

Качество воды (стр. 2 из 12)

В северной, восточной и на большей центральной части области отложения карбон покрыты толщей верхнеюрских глин мощностью от 10 до 60 м ( район города Истры ). Верхнеюрские глины служат водоупорной кровлей для вод карбона и создает напорность этих вод. В значительной части распространения верхнеюрских глин на них лежат пески и глины волжского яруса верхней юры и нижнего мела мощностью до 30 м (110 м в пределах Клинско–Дмитровской гряды).

Нижне – и верхнемеловые пески волжского яруса содержат огромные запасы подземных вод. Однако использовать эти воды для централизованного водоснабжения крайне трудно, т.к. пески очень мелкозернистые и глинистые с плохой водоотдачей. Вопрос использования этих вод является очень актуальным. Особенно в северных районах области.

Качество меловых вод, как правило, удовлетворительное. Они относятся к гидрокарбонатному типу с плотным остатком 200–300 мг /л, но часто содержат большие количества железа (до 10 мг /л). В опоковидных песчаниках верхнего мела и трепелах встречаются воды, которые в Загорском районе питают родники и колодцы. Такие воды слабоминерализованные, гидрокарбонатного типа с плотным остатком в пределах 150-200 мг / л.

Анализируя водоносный комплекс Московской области можно сделать вывод, что условия захвата подземных вод каменноугольных отложений чрезвычайно разнообразны. Поэтому глубины трубчатых колодцев, конструкция фильтров и оборудование варьируется в широких пределах.

По условиям залегания водоносных горизонтов, по качеству вод территорию области можно разделить на семь гидрогеологических районов.

1. Южный район имеет трубчатые колодцы, питающиеся водами серпуховской и окской свит нижнего карбона, глубиной 40 – 120 м с удельным дебитом до 15 м3 / час. Статические уровни воды в колодцах располагаются на глубине от 10 до 70 м. Плотные остатки вод не превышают 600 мг / л, содержание фтора около 1 мг / л.

2. Водозаборные скважины Юго – западного региона питаются водами каширского водоносного горизонта среднего карбона и серпуховской и окской свит нижнего карбона, Каширский водоносный горизонт характеризуется, как правило, небольшим водообилием. Удельные дебиты скважин составляют 2 – 3 м3 /час. В верхних слоях горизонта плотный остаток вод не превышает 300 мг / л, а содержание фтора порядка 0,5 мг / л. В нижних слоях плотный остаток до 500 мг / л. а фтор до 3 мг /л.

Водоносный горизонт нижнего карбона более водообилен. Удельные дебиты здесь достигают 5 – 7 м3 / час. Характерно, что минерализация вод нижнего карбона уменьшается с юго – востока на северо – запад. В юго – восточных частях района плотный остаток достигает 900 мг / л, содержание фтора составляет 2,5 – 3 мг / л, значительно возрастает сульфатность вод. В северо – западных частях района плотный осадок не превышает 400 мг /л, а количество фтора в воде до 1 мг /л.

3. Большой центральный район занимает значительную часть территории области. Трубчатые колодцы района питаются главным образом водами мячковско – подольского водоносного горизонта, реже – каширского водоносного горизонта среднего карбона и горизонтов нижнего карбона. В этом районе колодцы следует закладывать на мячковско – подольский горизонт, который характеризуется большим водообилием, чем нижнележащие горизонты. Удельный дебит скважин рекомендуемого горизонта достигает 15 м3 /час.

Воды Мячковско – подольского водоносного горизонта характеризуются плотным остатком до 500 мг / час, содержанием фтора обычно до 1 мг / л и относятся к гидрокарбонатному или гидрокарбонатно-сульфатному типу. Участки территории, приуроченные к районам залегания мезозойский фосфоритных отложений характеризуются водами с содержанием фтора до 5 мг /л.

4. В малом центральном районе трубчатые колодцы питаются водами Касимовского горизонта верхнего карбона и Мячковско – Подольского горизонта среднего карбона. Касимовский горизонт у южной границы района имеет мощность 10 – 20 м, к северу мощность его увеличивается до 45 м. Водообилие горизонта возрастает с юга на север, где удельный дебит скважин достигает 20 м3 / час. Воды горизонта имеют слабую минерализацию, плотный остаток не выше 300 мг/л, количество фтора до 0,6 мг л.

Мячковско - Подольский горизонт характеризуется небольшим водообилием, удельные дебиты достигают 10 м3 / час. Воды характеризуются значительной сульфатностью и минерализацией. Плотный остаток достигает до 1650 мг / л, содержание фтора составляет 5,5 мг /л.

5. В восточном районе для водоснабжения используются воды гжельского и касимовского водоносных горизонтов верхнего карбона. Гжельский и касимовский горизонты характеризуются средним водообилием, удельные дебиты скважин превышают 20 м3 / час. Воды обоих водоносных горизонтов слабоминерализованные, гидрокарбонатные с плотным остатком до 300 мг / л, количество фтора до 0,6 мг /л. В наиболее низменных участках района встречаются скважины, воды которых имеют плотный остаток порядка 500 мг /л, повышенную сульфатность, а содержание фтора достигает 1,5 мг /л.

Воды среднего и нижнего карбона этого района непригодны для водоснабжения из – за высокой минерализации (плотный остаток свыше 3000 мг / л ).

6. В Клинско – Дмитровском районе водозаборные колодцы питаются водами гжельского и касимовского горизонтов верхнего карбона. Воды гжельского горизонта гидрокарбонатного типа характерны слабой минерализацией, плотный остаток до 350 мг /л, содержание фтора до 0,3 мг /л. Водообилие скважин очень переменно (10 – 20 м3 /час ).

Касимовский горизонт имеет воду гидрокарбонатного типа с несколько большей минерализацией, содержание фтора до 1,2 мг /л.

7. Для водоснабжения в приволжском гидрогеологическом районе используются воды гжельского водоносного горизонта верхнего карбона. Удельные дебиты скважин обычно равны 10 – 20 м3 / час, плотный остаток 400 – 700 мг /л, содержание фтора до 2 мг /л.

Из характеристик гидрогеологических районов области видно. Что наиболее трудные условия получения подземных вод наблюдается в юго – западном подземных вод наблюдаются в юго – западном и малом центральном районах, где касимовский горизонт верхнего карбона и мячковско – подольский горизонт среднего карбона характеризуются малым водообилием, вода отличается большей жесткостью ( до 30 мг – экв / л ) и значительным содержанием фтора (до 4 мг /л ).

В каждом гидрогеологическом районе наряду с общими условиями использования подземных вод имеются отклонения. Например, в благоприятном большом центральном районе вблизи города Кунцево отмечается отсутствие мячковско – подольского горизонта, а водоносные горизонты Каширский и Нижнего карбона характеризуются малым водообилием, а вода – большим содержанием фтора (до 5 мг /л ).

Другим выводом из анализа качества вод гидрогеологических районов области является следующее. Степень минерализации воды и содержание фтора увеличиваются по мере погружения горизонта, т.е. в направлении его падения, следовательно для получения более пресной воды с меньшим содержанием фтора водозаборные колодцы необходимо бурить на водоносный горизонт карбона, залегающий ближе к поверхности земли, если это возможно по санитарным условиям.

При использовании подземных вод большое значение имеет содержание в них железа. В подземных водах на территории Московской области железо содержится в грунтовых водах и в самом верхнем горизонте каменноугольных отложений. В грунтовые воды, приуроченные к четвертичным отложениям, железо попадает из железистых соединений преимущественно лимонитов, а в воды межпластовых и каменноугольных отложений – из пород континентальной толщи верхнегорских отложений, содержащих пириты.

На участках, где четвертичные отложения (или отложения пород континентальной толщи ) залегают на водоносном горизонте карбона при отсутствии юрских глин, воды этих отложений проникают в трещиноватыеизвестняки, вызывая ожелезивание глубоких вод до10 мг /л и более ( например Можайский район ).

В водах нижних водоносных горизонтов железо находится в небольших количествах, обычно не более 0,3 мг / л, что является вполне приемлемым.

Однако даже при отсутствии континентальных отложений и наличии юрских глин часты случаи получения воды со значительным содержанием железа из – за недостатков конструкции скважин, если глины пройдены насквозь колонной обсадных труб и ожелезенные воды четвертичных отложений проникают в скважину.

Различные соединения железа содержатся в коре выветривания карбона, поэтому верхние его слои толщиной 2–3 м надлежит надежно перекрывать обсадными трубами даже с подбашмачной цементацией. Соединения железа наблюдаются и в глинах, разделяющих, касимовский и гжельский горизонты верхнего карбона. Их также следует изолировать глухими участками труб. Наблюдаются случаи, когда трубчатые колодцы дают воду с большим содержанием железа в результате неправильного крепления их обсадными трубами. При неплотном соприкосновении стенок колодца с верхнеюрскими глинами по затрубным пространствам в него проникают воды четвертичных отложений, содержащие значительное количество железа.

Интересно отметить, что в подземных водах железо почти всегда встречается вместе с серо водородом. Сероводород переводит окисное, нерастворимое в воде железо, в закисное – растворимое. В водопроводных сооружениях сероводород улетучивается, закисное железо под действием кислорода воздуха переходит в окисное, а затем в выпадающий в осадок гидрат окиси железа. Появление сероводорода в подземных водах можно объяснить за счет гниения органических соединений. В связи с этим на территории, где в подземные воды проникают органические вещества в воде обнаруживается сероводород и железо (районы г.г. Люблино и Люберцы ). Воды с повышенным содержанием железа отличаются значительной окисляемостью. Это также справедливо для восточных районов области, где имеются большие площади, занятые торфяником.