Смекни!
smekni.com

Гены в нашей жизни (стр. 3 из 7)

На этот раз никто не критиковал прогнозы К.Вентера, сделанные им в присутствии советника президента США по науке д-ра Н.Лэйна и представителя консорциума, крупнейшего специалиста по секвенированию генома д-ра Роберта Ватерстона.

Предварительная карта генома будет содержать около 90% всех генов, но, тем не менее, она будет большим подспорьем в работе ученых и врачей, поскольку позволит довольно точно отыскивать необходимые гены. Д-р Вентер заявил, что теперь собирается использовать свои 300 секвенаторов для анализа генома мыши, знание которого поможет понять, как работают гены человека.

Расшифрованный геном принадлежит мужчине, поэтому содержит как X-, так и Y-хромосомы. Имя этого человека не известно, и это не имеет значения, т.к. обширные данные по индивидуальной изменчивости ДНК собраны и продолжают собираться как компанией Celera, так и консорциумом исследователей. Между прочим, консорциум использует в своих исследованиях генетический материал, полученный от различных людей. Д-р Вентер охарактеризовал полученные консорциумом результаты как 500 тыс. расшифрованных, но не упорядоченных фрагментов, из которых очень трудно будет составить целые гены.

Д-р Вентер заявил, что после того, как структура генов будет определена, он устроит конференцию для того, чтобы привлечь сторонних экспертов к установлению положения генов в молекулах ДНК и определению их функций. После этого другие исследователи получат бесплатный доступ к данным по геному человека.

Между Вентером и консорциумом исследователей велись переговоры о совместной публикации полученных результатов, причем один из основных пунктов соглашения должен был предусматривать, что патентование генов возможно лишь после точного определения их функций и положения в ДНК.

Однако переговоры были прерваны из-за разногласий по поводу того, что считать завершением расшифровки генома. Проблема состоит в том, что в ДНК эукариот, в отличие от ДНК прокариот, есть фрагменты, которые не поддаются расшифровке современными методами. Размеры таких фрагментов могут быть от 50 до 150 тыс. оснований, но, к счастью, эти фрагменты содержат очень немного генов. В то же время и в участках ДНК, богатых генами, есть фрагменты, которые также не могут быть пока расшифрованы.

Определение положения и функций генов предполагается осуществить с помощью специальных компьютерных программ. Эти программы будут анализировать структуру генов и, сравнивая ее с данными по геномам других организмов, предлагать варианты их возможных функций. По мнению компании Celera, работу можно считать завершенной, если гены определены практически полностью и точно известно, как расшифрованные фрагменты располагаются на молекуле ДНК, т.е. в каком порядке. Этому определению удовлетворяют результаты Celera, в то время как результаты консорциума не позволяют однозначно определить положение расшифрованных участков относительно друг друга.

Компания Celera предполагает после составления полной карты генома человека сделать эти данные доступными для других исследователей по подписке, при этом для университетов плата за пользование банком данных будет очень низкой, 5–15 тыс. долларов в год. Это составит серьезную конкуренцию базе данных Genbank, принадлежащей университетам.

Участники заседания комитета по науке резко критиковали такие компании, как Incyte Pharmaceuticals и Human Genome Sciences, которые каждую ночь копировали данные консорциума, доступные по Интернету, а затем подавали заявки на патентование всех генов, обнаруженных ими в этих последовательностях.

На вопрос, не могут ли данные о геноме человека быть использованы для создания биологического оружия нового типа, например, опасного только для некоторых популяций, д-р Вентер ответил, что гораздо большую опасность представляют данные по геномам болезнетворных бактерий и вирусов. На вопрос одного из конгрессменов, не станет ли теперь реальностью целенаправленное изменение человеческой расы, д-р Вентер ответил, что для полного определения функций всех генов может потребоваться около ста лет, а до тех пор о направленных изменениях в геноме говорить не приходится.

Напомним, что в декабре 1999 г. исследователи Великобритании и Японии объявили об установлении структуры 22-й хромосомы. Это была первая декодированная хромосома человека. Она содержит 33 млн. пар оснований, и в ее структуре остались нерасшифрованными 11 участков (около 3% длины ДНК). Для этой хромосомы определены функции примерно половины генов. Установлено, например, что с дефектами этой хромосомы связано 27 различных заболеваний, среди которых такие, как шизофрения, миелоидная лейкемия и трисомия 22 – вторая по значению причина выкидышей у беременных.

В то время британские ученые резко критиковали методы секвенирования, используемые компанией Celera, считая, что они потребуют слишком длительного времени для расшифровки последовательностей и определения взаимного расположения их фрагментов. Тогда на основе известного объема декодированного материала делались прогнозы, что следующими будут картированы 7-, 20- и 21-й хромосомы.

Через неделю после объявления о завершении расшифровки нуклеотидных последовательностей в геноме человека, состоялось собрание Американской ассоциации за прогресс в науке, на которой министр по энергетике США Билл Ричардсон объявил, что ученые Объединенного института генома определили структуры 5-, 16- и 19-й хромосом человека.

Эти хромосомы содержат примерно 300 млн. пар оснований, что составляет 10–15 тыс. генов, или около 11% генетического материала человека. Пока удалось картировать 90% ДНК этих хромосом – остались не поддающиеся дешифровке участки, содержащие незначительное число генов.

На картах хромосом обнаружены генетические дефекты, которые могут приводить к некоторым заболеваниям почек, раку простаты и прямой кишки, лейкемии, гипертонии, диабету и атеросклерозу.

По словам Ричардсона, ближе к лету информация о структуре хромосом будет доступна всем исследователям бесплатно.

Генетика и проблема рака

Достижения генетики и молекулярной биологии последних десятилетий оказали огромное влияние на понимание природы инициализации и прогрессии злокачественных образовании. Окончательно установлено, что рак представляет собой гетерогенную группу заболеваний, каждое из которых вызывается комплексом генетических нарушений, определяющих свойство неконтролируемого роста и способность к метастазированию. Эти современные знания открыли принципиально новые возможности в диагностике и лечении злокачественных новообразований.

Влияние конкретных генетических нарушений, лежащих в основе опухолевого роста, позволило обнаружить специфические молекулярные маркеры и разработать на их основе тесты ранней диагностики опухолей.

Известно, что неопластические трансформация клеток происходит в результате накопления наследуемых (герминативных) и приобретенных (соматических) мутаций в протоонкогенах или генах-супрессорах. Именно эти генетические нарушения с первую очередь могут быть использованы для обнаружения злокачественных клеток в клиническом материале.

Наиболее подходящим субстратом молекулярной диагностики является ДНК, т.к. она длительно сохраняется в образцах тканей и может быть легко размножена с помощью т.н. полимеразной цепной реакции (ПЦР). Это позволяет осуществлять диагностику даже при наличии минимального количества исследуемого материала.

Помимо определения мутаций в онкогенах и генах-супрессорах в диагностических целях используют изменения, выявляемые в повторяющихся последовательностях ДНК, т.н. микро сателлитах.

При сравнении парных образцов опухоли и нормальных тканей может быть выявлено выпадение одного из аллелей в опухоли (потеря гетерозиготности (ПГ), что отражает наличие хромосомных делеций, лежащих в основе инактивации генов-супрессоров.

Микросателлитная нестабильность (МН) особенно характерна для наследуемой формы неполипозного рака толстой кишки. Она, однако, обнаруживается при многих других видах опухолей и проявляется как в инактивации генов-супрессоров, так и в делециях анонимных некодирующих последовательностей ДНК.

В целом, обнаружение клинических образцах ПГ и/или МН указывает на присутствие клеток, несущих искаженную информацию, свойственную опухолевому росту. Мутации в онкогенах и генах-супрессорах обнаруживаются также при использовании в качестве исходного материала клеточной РНК, которую превращают в реакцию обратной транскрипции в комплиментарную (С)-ДНК и амплифицируют с помощью ПЦР. Данный метод (RT-ПЦР) широко применяют для выявления экспрессии генов в различных тканях.

Известно, что нормальные и опухолевые клетки различаются по экспрессии многих сотен генов, поэтому разработаны современные методы серийного анализа экспрессии, основанные на технологии микрочипов и позволяющие оценивать сотни и даже тысячи генов одновременно.

Одним из новых перспективных молекулярных маркеров опухоли является телоизомераза, рибонуклеопротеиновый фермент, наращивающий нуклеотидные последовательности на концах хромосом (теломерах) активность данного фермента постоянно присутствует в более чем 90% опухолей и практически не обнаруживается в нормальных тканях. Несмотря на несомненную перспективность и высокую точность методов молекулярной диагностики, вопрос об их специфичности и чувствительности сохраняет свою актуальность. Это связано с тем, что опухоли всегда состоят из смеси нормальных и злокачественных клеток, поэтому выделяемая из них ДНК также гетерогенна, что необходимо учитывать при решении вопроса о применимости молекулярных тестов.

Тем не менее, методики, базирующиеся на ПЦР, технологически исключительно чувствительны и способны обнаруживать специфические генетические нарушения задолго до формирования морфологически определяемой опухоли.