Смекни!
smekni.com

Цитология, эмбриология, общая гистология (стр. 12 из 14)

Позднее центры окостенения появляются в эпифизах кости. Костная ткань здесь замещает хрящевую. Последняя сохраняется лишь на суставной поверхности и в эпифизарной пластинке роста, отграничивающей эпифиз от диафиза в течение всего периода роста организма до половой зрелости животного.

Надкостница (периост) состоит из двух слоев: внутренний - содержит коллагеновые и эластические волокна, остеобластыЮ остеокласты и кровеносные сосуды. Наружный - образован плотной соединительной тканью. Она непосредственно связана с сухожилиями мышц.

Эндоост - слой соединительной ткани, выстилающий костно-мозговой канал. Он содержит остеобласты и тонкие пучки коллагеновых волокон, переходящих в ткань костного мозга.

Мышечные ткани

1. Гладкие.

2. Сердечная поперечнополосатая.

3. Скелетные поперечнополосатые.

4. Развитие, рост и регенерация мышечных волокон.

1. Ведущая функция мышечных тканей - обеспечение перемещения в пространстве организма в целом и его частей. Все мышечные ткани составляют морфофункциональную группу, а в зависимости от структуры органелл сокращения ее делят на три группы: гладкие, скелетные поперечно-полосатые и сердечные поперечнополосатые мышечные ткани. Единого источника эмбрионального развития у этих тканей нет. Ими являются мезенхима, миотомы сегментированной мезодермы, висцеральный листок спланхнотома и др.

Гладкие мышечные ткани мезенхимного происхождения. Ткань состоит из миоцитов и соединительнотканного компонента. Гладкий миоцит представляет собой веретеновидную клетку длиной 20-500 мкм, толщиной 5-8 мкм. Ядро палочковидной формы находится в ее центральной части. В клетке много митохондрий.

Каждый миоцит окружен базальной мембраной. В ней есть отверстия, в области которых между соседними миоцитами образуются щелевидные соединения (нексусы), обеспечивающие функциональные взаимодействия миоцитов в ткани. В базальную мембрану вплетены многочисленные ретикулярные фибриллы. Вокруг мышечных клеток ретикулярные, эластические и тонкие коллагеновые волокна образуют трехмерную сеть - эндомизий, которая объединяет соседние миоциты.

Физиологическая регенерация гладкой мышечной ткани проявляется обычно в условиях повышенных функциональных нагрузок преимущественно в форме компенсаторной гипертрофии. Наиболее отчетливо это наблюдается в мышечной оболочке матки во время беременности.

Элементами мышечной ткани эпидермального происхождения являются миоэпителиальные клетки, развивающиеся из эктодермы. Они располагаются в потовых, молочных, слюнных и слезных железах, дифференцируясь одновременно с их секреторными эпителиальными клетками из общих предшественников. Сокращаясь, клетки способствуют выведению секрета железы.

Гладкие мышцы образуют мышечные слои во всех полых и трубчатых органах.

2. Источники развития сердечной поперечнополосатой мышечной ткани - симметричные участки висцерального листка спланхнотома. Большинство ее клеток дифференцируются в кардиомиоциты (сердечные миоциты), остальные - в клетки мезотелия эпикарда. И те и другие имеют общие клетки-предшественники. В ходе гистогенеза дифференцируются несколько видов кардиомиоцитов: сократительные, проводящие, переходные и секреторные.

Строение сократительных кардиомиоцитов. Клетки имеют удлинненную форму (100-150 мкм), близкую к цилиндрической. Их концы соединяются друг с другом вставочными дисками. Последние выполняют не только механическую функцию, но и проводящую, обеспечивают электрическую связь между клетками. Ядро овальной формы, располагается в центральной части клетки. В ней много митохондрий. Они образуют цепочки вокруг специальных органелл - миофибрилл. Последние построены из постоянно существующих упорядоченно расположенных нитей актина и миозина - сократительных белков. Для их закрепления служат особые структуры - телофрагма и мезофрагма, построенные из других белков.

Участок миофибриллы между двумя Z -линиями называется саркомером. А-полосы - анизотропные, микрофиламенты толстые, содержат миозин: I-полосы - изотропные, микрофиламенты тонкие, содержат актин; H-полоса располагается посредине А-полосы (рис.21).

Существует несколько теорий механизма сокращения миоцитов:

1) Под влиянием потенциала действия, который распространяется по цитолемме, ионы кальция освобождаются, поступают к миофибриллам и инициируют сократительный акт, являющийся результатом взаимодействия актиновых и миозиновых микрофиламентов; 2) Наиболее распространенной в настоящее время теорией является модель скользящих нитей (Г. Хаксли, 1954). Мы являемся сторонниками последней.

Особенности строения проводящих кардиомиоцитов. Клетки крупнее рабочих кардиомиоцитов (длина около 100 мкм, а толщина около 50 мкм). Цитоплазма содержит все органеллы общего значения. Миофибриллы немногочисленны и лежат по периферии клетки. Эти кардиомиоциты соединяются в волокна друг с другом не только концами, но и боковыми поверхностями. Основная функция проводящих кардиомиоцитов состоит в том, что они воспринимают управляющие сигналы от пейсмекерных элементов и передают информацию к сократительным кардиомиоцитам (рис.22).

В дефинитивном состоянии сердечная мышечная ткань не сохраняет ни стволовых клеток, ни клеток-предшественников, поэтому, если кардиомиоциты гибнут (инфаркт), то они не восстанавливаются.


3. Источником развития элементов скелетной поперечнополосатой мышечной ткани являются клетки миоциты. Одни из них дифференцируются на месте, другие же мигрируют из миотомов в мезенхиму. Первые участвуют в формировании миосимпласта, вторые дифференцируются в миосателлитоциты.

Основным элементом скелетной мышечной ткани является мышечное волокно, образованное миосимпластом и миосателлитоцитами. Волокно окружено сарколеммой. Поскольку симпласт не клетка, термин “цитоплазма” не применяют, а говорят “саркоплазма” (греч. sarcos - мясо). В саркоплазме у полюсов ядер располагаются органеллы общего значения. Специальные органеллы представлены миофибриллами.

Механизм сокращения волокон такой же, как и в кардиомиоцитах.

Большую роль в деятельности мышечных волокон играют включения, в первую очередь миоглобина и гликогена. Гликоген служит основным источником энергии, необходимой как для совершения мышечной работы, так и для поддержания теплового баланса всего организма.

Рис. 22. Ультрамикроскопическое строение трех видов кардиомиоцитов: проводящих (А), промежуточных (Б) и рабочих (В) (схема по Г.С. Катинасу)

1 — базальная мембрана; 2 — ядра клеток; 3 — миофибриллы; 4 — плазмолемма; 5 — соединение рабочих кардиомиоцитов (вставочный диск); соединения промежуточного кардиомиоцита с рабочим и проводящим кардиомиоцитами; 6 — соединение проводящих кардиомиоцитов; 7 — поперечные трубочки-системы (органеллы общего назначения не показаны).

Миосателлитоциты прилежат к поверхности симпласта так, что их плазмолеммы соприкасаются. С одним симпластом связано значительное количество сателлитоцитов. Каждый миосателлитоцит - одноядерная клетка. Ядро мельче, чем ядро миосимпласта, и более округлое. Митохондрии и эндоплазматическая сеть распределены в цитоплазме равномерно, комплекс Гольджи и клеточный центр расположены рядом с ядром. Миосателлитоциты - камбиальные элементы скелетной мышечной ткани.

Мышца как орган. Между мышечными волокнами находятся тонкие прослойки рыхлой соединительной ткани - эндомизий. Его ретикулярные и коллагеновые волокна переплетаются с волокнами сарколеммы, что способствует объединению усилий при сокращении. Мышечные волокна группируются в пучки, между которыми располагаются более толстые прослойки рыхлой соединительной ткани - перимизий. В нем содержатся также и эластические волокна. Соединительная ткань, окружающая мышцу в целом, называется эпимизием.

Васкуляризация. Артерии, вступающие в мышцу, ветвятся в перимизии. Рядом с ними много тканевых базофилов, регулирующих проницаемость сосудистой стенки. Капилляры располагаются в эндомизии. Венулы и вены лежат в перимизии рядом с артериолами и артериями. Здесь же проходят и лимфососуды.

Иннервация. Нервы, вступающие в мышцу содержат как эфферентные, так и афферентные волокна. Отросток нервной клетки, приносящий эфферентный нервный импульс, проникает через базальную мембрану и ветвится между ней и плазмолеммой симпласта, участвуя в образовании двигательной, или моторной бляшки. Нервный импульс освобождает здесь медиаторы, которые вызывают возбуждение, распространяющееся по плазмолемме симпласта.

Итак, каждое мышечное волокно иннервируется самостоятельно и окружено сетью гемокапилляров. Этот комплекс образует морфофункциональную единицу скелетной мышцы - мион; иногда мионом называют само мышечное волокно, что не соответствует Международной гистологической номенклатуре.

4. Клетки, из которых в эмбриогенезе образуются поперечнополосатые мышечные волокна, называются миобластами. После ряда делений эти одноядерные клетки, не содержащие миофибрилл, начинают сливаться между собой, формируя удлиненные многоядерные цилиндрические образования - микротрубочки, в которых в свое время появляются миофибриллы и другие органеллы, характерные для поперечнополосатых мышечных волокон. У млекопитающих большинство этих волокон образуется еще до рождения. В период постнатального роста мышцы должны становиться длиннее и толще для того, чтобы сохранить соразмерность с растущим скелетом. Их окончательная величина зависит от выпадающей на их долю работы. После первого года жизни дальнейший рост мышц всецело обусловлен утолщением отдельных волокон, т. е. представляет собой гипертрофию (гипер - над, сверх и трофи - питание), а не увеличением их числа, что называлось бы гиперплазией (от плазис - образование).