Смекни!
smekni.com

Философия и методология науки (стр. 11 из 80)

Нисколько не умаляя роли философии, Ф. Бэкон пред­принимает «Великое восстановление наук» (в книге, остав­шейся не законченной) и фиксирует возникновение науки как «триединого целого» (система специализированного знания и его постоянного воспроизводства и обновления, социальный институт и форма духовного производства.

Своим творчеством Рене Декарт (1596-1650), французский философ и математик, призван был расчистить почву для по­стройки новой рациональной культуры и науки. Для этого ну­жен новый рационалистический Метод, прочным и незыбле­мым основанием которого должен быть человеческий разум.

В протяженной субстанции, или природе, как считает Де­карт, мы можем мыслить ясно и отчетливо только ее величи­ну (что тождественно с протяжением), фигуру, расположение частей, движение. Последнее понимается только как переме­щение, ни количественные, ни качественные изменения к нему не относятся.

Наукой же, изучающей величину, фигуры, является гео­метрия, которая становится универсальным инструментом познания. И перед Декартом стоит задача - преобразовать геометрию так, чтобы с ее помощью можно было бы изучать и движение. Тогда она станет универсальной наукой, тожде­ственной Методу. И создав систему координат, введя пред­ставление об одновременном изменении двух величин, из ко­торых одна есть функция (кстати, термина «функция» еще в его терминологии нет) другой, Декарт внес в математику принцип движения. Теперь математика становится формаль­но-рациональным методом, с помощью которого можно «счи­тать» числа, звезды, звуки и т. д., любую реальность, устанав­ливая в ней меру и порядок с помощью нашего разума.

Французский мыслитель отождествляет пространство (протяженность) с материей (природой), понимая последнюю как непрерывную, делимую до бесконечности. Поэтому и кос­мос у него беспределен. Но идею Дж. Бруно о множественно­сти миров Декарт не разделяет.

Философ понимает движение как относительное, движе­ние и покой равнозначны: тело может являться движущимся относительно одних тел, в то время как относительно других будет оставаться покоящимся. На этом основании он форму­лирует принцип инерции: тело, раз начав двигаться, продол­жает это движение и никогда само собой не останавливается.

Гарантом и для закона инерции (первого закона природы) и для второго закона, утверждающего, что всякое тело стре­мится продолжать свое движение по прямой, согласно Декар­ту, выступает Бог-Творец. Третий закон определяет принцип движения сталкивающихся тел. Первый и второй законы при­знавались в физике Нового времени, третий же был подверг­нут резкой критике.

Согласно Декарту, задача науки - вывести объяснение всех явлений природы из полученных начал, в которых нельзя усомниться, но устанавливаются эти начала философией. Поэтому его часто упрекают в априорном характере научных положений.

Декарт отмечает, что представление о мире, которое дает наука, отличается от реального природного мира, поэтому научные знания гипотетичны. Признание вероятностного их характера некоторые исследователи видят в нежелании Декар­та навлечь на себя подозрение в подрыве религиозной веры. Но была и теоретическая причина, как считает П. П. Гайденко: «И причиной этой, как ни парадоксально, является божественное всемогущество. Какая же тут, казалось бы, может быть связь? А между тем простая: будучи всемогущим, Бог мог воспользоваться бесконечным множеством вариантов для со­здания мира таким, каким мы его теперь видим. А потому тот вариант, который предложен Декартом, является только веро­ятностным, - но в то же время он равноправен со всеми ос­тальными вариантами, если только он пригоден для объясне­ния встречающихся в опыте явлений».

Нигде в предшествующем знании не существовало понима­ния природы как сложной системы механизмов, всемогущий Творец никогда не выступал в образе Бога-Механика, поэтому Декарту важно показать, что Бог владеет бесконечным арсена­лом средств для построения машины мира, и хотя человеку не дано постичь, какие именно из средств использовал Бог, строя мир, человек, создавая науку, конструирует мир так, чтобы между ним и реальным миром имелось сходство. Вот поэтому предла­гаемый в науке вариант объяснения мира носит гипотетический характер, но отнюдь не теряет своей объяснительной силы.

Сильное впечатление на современников произвела теория вихрей (космогоническая гипотеза) Декарта: мировое про­странство заполнено особым легким, подвижным веществом, способным образовывать гигантские вихри. Хотя космогони­ческая гипотеза Декарта была отвергнута, но остались бес­смертными его достижения в области математики: введение системы координат, алгебраических обозначений, понятия переменной, создание аналитической геометрии. Важна была также идея развития, содержащаяся в теории вихрей, и идея деления «корпускул» до бесконечности, что впоследствии было подтверждено атомной физикой.

Научную программу, которую создал Исаак Ньютон (1643- 1727), английский физик, он назвал «экспериментальной фи­лософией». В соответствии с ней исследование природы дол­жно опираться на опыт, который затем обобщается при помо­щи «метода принципов», смысл которого заключается в следующем: проведя наблюдения, эксперименты, с помощью индукции вычленить в чистом виде связи явлений внешнего мира, выявить фундаментальные закономерности, принципы, которые управляют изучаемыми процессами, осуществить их математическую обработку и на основе этого построить цело­стную теоретическую систему путем дедуктивного разверты­вания фундаментальных принципов.

Ньютон создал основы классической механики как цело­стной системы знаний о механическом движении тел, сфор­мулировал три ее основных закона, дал математическую фор­мулировку закона всемирного тяготения, обосновал теорию движению небесных тел, определил понятие силы, создал дифференциальное и интегральное исчисление как язык опи­сания физической реальности, выдвинул предположение о со­четании корпускулярных и волновых представлений о приро­де света. Механика Ньютона стала классическим образцом де­дуктивной научной теории.

Также как и Ньютон, немецкий ученый Готфрид Вильгельм Лейбниц (1646-1716) был убежден, что все в мире существу­ющее должно быть объяснено с помощью исключительно ме­ханических начал. Природа - это совершенный механизм, и все - от неорганического до живых организмов - создано ге­ниальным механиком Богом. И познаваться этот механизм может с помощью механических причин и законов.

Отметим основные научные достижения Лейбница (вопре­ки его механистическому материализму вначале, а затем объективному идеализму - особенно в «Монадологии»):

1. Открыл (одновременно с Ньютоном) дифференциаль­ное и интегральное исчисления, что положило начало новой эре в математике.

2. Стал родоначальником математической логики и одним из создателей счетно-решающих устройств. В связи с этим основатель кибернетики Н. Винер назвал его сво­им предшественником и вдохновителем.

3. В вопросах физики и механики подчеркивал важную роль наблюдений и экспериментов, был одним из пер­вых ученых, предвосхитивших закон сохранения и пре­вращения энергии.

4. В трактате «Протагея» одним из первых пытался научно истолковать вопросы происхождения и эволюции Земли.

5. Изобрел специальные насосы для откачки подземных вод и создал другие оригинальные технические новшества.

6. Обратил внимание на теорию игр.

7. Указал на взаимосвязи, развитие и «тонкие опосредования» между растительным, животным и человеческим «царствами».

8. Ратовал за широкое применение научных знаний в практике.

В Новое время сложилась механическая картина мира, утверждающая: вся Вселенная - совокупность большого числа неизменных и неделимых частиц, перемещающихся в абсолютном пространстве и времени, связанных силами тяготения, подчиненных законам классической механики; природа выступает в роли простой машины, части которой жестко детерминированы; все процессы в ней сведены к механическим.

Механическая картина мира сыграла во многом положи­тельную роль, дав естественнонаучное понимание многих яв­лений природы. Таких представлений придерживались практи­чески все выдающиеся мыслители XV в. - Галилей, Ньютон, Лейбниц, Декарт. Для их творчества характерно построение целостной картины мироздания. Учеными не просто стави­лись отдельные опыты, они создавали натурфилософские си­стемы, в которых соотносили полученные опытным путем знания с существующей картиной мира, внося в последнюю необходимые изменения. Без обращения к фундаментальным научным основаниям считалось невозможным дать полное объяснение частным физическим явлениям. Именно с этих позиций начинало формироваться теоретическое естествозна­ние, и в первую очередь - физика.

В основе механистической картины мира лежит метафизи­ческий подход к изучаемым явлениям природы как не связан­ным между собой, неизменным и не развивающимся. Ярким примером использования его является классификация живот­ного мира, изложенная известным шведским ученым-натура­листом Карлом Линнеем (1707-1778) в работе «Система при­роды». Достоинством ее является бинарная система обозначе­ния растений и животных (где первое слово обозначает род, а второе - вид), дошедшая до настоящего времени. Располо­жив растения и животных в порядке усложнения их строения, ученый тем не менее не усмотрел изменчивости видов, считая их неизменными, созданными Богом.

Успешное развитие классической механики привело к тому, что среди ученых возникло стремление объяснить на основе ее законов все явления и процессы действительности. В конце XVH в. - первой половине ХГХ в. намечается тен­денция использования научных знаний в производстве, при­чиной чему было развитие машинной индустрии, пришедшее на смену мануфактурному производству, что вызвало развитие технических наук. «Технические науки не являются простым продолжением естествознания, прикладными исследования­ми, реализующими концептуальные разработки фундамен­тальных естественных наук. В развитой системе технических наук имеется свой слой как фундаментальных, так и приклад­ных знаний».