Смекни!
smekni.com

Влияние магнитных полей на ранние стадии онтогенеза на представителей семейства бобовых (стр. 5 из 10)

Пассивное магнитное экранирование может быть рекомендовано в случаях, когда за стеной помещений находится трансформаторная подстанция или разнесенная в пространстве система токоведущих шин распределительного устройства, однако при этом целесообразно решать вопрос на стадии планирования размещения рабочих мест и проводить мониторинг эл/м обстановки до принятия решения о размещении постоянных рабочих мест.

В качестве альтернативы пассивному магнитному экранированию в ряде случаев может быть применено активное магнитное экранирование, при котором используются компенсирующие внешнее магнитное поле катушки с автоматически управляемым в них током. В следствие векторного сложения результирующее МП в определенной пространственной области оказывается минимизированным, активное экранирование может быть успешно применено для компенсации внешнего, практически однородного МП в какой-то небольшой пространственной области (это следует из топологи МП колец Гельмгольца). Такая задача решается с помощью системы трехмерной компенсации магнитного поля MR-3 фирмы «Stefan Mayer Instruments».

Способ уменьшения создающего МП ПЧ тока требует диагностики системы электроснабжения здания и последующих работ по приведению ее в порядок в соответствии с требованиями недавно введенных в действие национальных стандартов. Четырехлетний опыт работы показывает, что практически в 90% случаев именно этот метод позволяет с минимальными затратами избавиться от повышенного фона МП ПЧ. Наиболее типичными из них являются следующие: фазные и нулевые рабочие проводники системы электроснабжения разнесены в пространстве, в этом случае необходима замена таких проводных линий на кабельные, в которых токонесущие проводники находятся на минимальном расстоянии друг от друга.

Вследствие постоянно встречающихся на практике и многократно повторяющихся ошибок монтажа систем зануления и заземления, повреждения изоляции нулевых рабочих проводников, т. е. возникновение некорректных гальванических связей последних с металлоконструкциями и трубопроводами здания, возникают токи утечки, путем диагностики электрощитов и кабельных линий системы электроснабжения здания с помощью специально разработанной методики выявляется наличие и находятся конкретные места утечки тока от системы электроснабжения на металлоконструкции и трубопроводы здания, далее выполняются работы по ликвидации указанных гальванических связей, в крайнем случае может понадобиться перекладка или замена ряда кабельных линий.

При выполнении работ по защите персонала от воздействия МП ПЧ необходимо использовать комплексный подход, включающий точное диагностирование состояния эл/м обстановки, его временных вариаций, анализ режима работы источника МП ПЧ и факторов влияния на формирование эл/м обстановки, разработку мероприятий по защите на основе выбора метода с учетом технико-экономических показателей.


3. Воздействие магнитных полей на биологические объекты и человека

Более 10 тыс. публикаций посвящено отдельным вопросам воздействия ЭМП на человека и природу. К настоящему времени, по данным экологов и врачей-гигиенистов известно, что все диапазоны электромагнитных полей оказывают влияние на здоровье и работоспособность людей, на отдаленные последствия. Доказано, что наиболее чувствительной системой организма к действию ЭМП является центральная нервная система. Человек не способен физически ощущать окружающее его ЭМП, однако оно вызывает уменьшение его адаптивных резервов, снижение иммунитета, работоспособности, увеличивает риск заболеваний. Энергетическая нагрузка от электромагнитных излучений в промышленности и в быту возрастает постоянно в связи со стремительным расширением сети источников физических полей электромагнитной природы, а также с увеличением их мощностей [10].

3.1 Механизмы воздействия МП

Экспериментальные данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности ЭМП во всех частотных диапазонах. Существует несколько механизмов действия ЭМП на биообъекты:

• тепловой механизм воздействия – связан с повышением температуры облучаемой ткани при относительно высоких уровнях облучающего ЭМП. Это происходит за счет возникновения в тканях токов смещения и проводимости, которые и вызывают нагревание [19].

• нетепловое или информационное воздействие – когда температура повышается несущественно, но действие электромагнитных волн проявляется на организменном уровне при относительно низком уровне ЭМП (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2) [4, 18]:

изменение ионной проницаемости клеточных мембран под действием слабоинтенсивных ЭМП, что связывается с раковыми заболеваниями, в частности лейкемией.

неблагоприятное воздействие слабоинтенсивных ЭМП на центральную нервную систему. Различают три степени воздействия: легкую, которая характеризуется начальным проявлением астенического и нейроциркулярного синдромов; среднюю, когда симптомы указанных синдромов усилены и сочетаются с начальным проявлением эндокринных нарушений; тяжелую, при которой усилена симптоматика нарушений функций центральной нервной, сердечно-сосудистой и эндокринной систем человека и появляются разнообразные психические нарушения.

эффект «жемчужной цепочки», обусловленный силами, действующими на клетки крови (эритроциты и лейкоциты), помещенные в импульсной или постоянное поле. Образование цепочек связано с притяжением между частицами, которые под действием поля приобретают дипольные моменты.

насыщение диэлектрической проницаемости растворов белков или других биологических макромолекул, что приводит к резонансным поглощениям излучения живой клеткой.

эффект «радиозвука» у людей, облучаемых радиолокационными сигналами средней мощности.

влияние на сердечно-сосудистую систему, в том числе снижение артериального давления и замедление ритма сердца (брадикардия).

демодулирующее действие – наблюдались изменения электроэнцефалограмм и электрокардиограмм [2].

Уже в ранних публикациях по биологическому действию МП отмечалось, что в МП снижается устойчивость животных (крыс) к недостатку кислорода. Предполагалось, что МП, вызывая тканевую гипоксию в головном мозге, укорачивает срок жизни животных в условиях кислородного голодания. Было высказано предположение, что МП, снижая интенсивность свободного окисления и увеличивая сопряженность, повышает экономичность, но снижает биологическую эффективность работы дыхательной цепи, замедляет скорость выработки адезинтрифосфата (АТФ). Поскольку АТФ является конечным звеном метаболизма и служит своеобразным «топливом» для организма, то его дефицит - основное патологическое звено при любом виде гипоксии. Вопрос о механизме влияния МП на живые организмы до сих пор окончательно не изучен. Однако уже имеются достаточно убедительные доказательства участия в этом механизме мембранных процессов, а также ионов кальция и магния. Вероятно, воздействие ЭМП на целостный организм не сказывается на процессах, протекающих в самой нервной ткани, в связи с хорошей изоляцией нейронов от электрических и магнитных влияний межклеточной жидкостью и другими клеточными элементами. Средняя ионная концентрация межклеточной жидкости поддерживается на постоянном уровне механизмами мембранного транспорта и гематоэнцефалическим барьером. При воздействии ЭМП происходят локальные изменения концентрации ионов, в том числе кальция и магния, что может существенно влиять на синаптические передачи. С помощью ионов кальция мембранная поверхность нейрона способна воспринимать слабые электрические градиенты. Далее, согласно гипотезе М. А. Шишло, в мембране митохондрий за счет разности электрических потенциалов происходит скачок концентрации ионов водорода на границе раздела двух сред, который используется для синтеза АТФ [20].

Клетки различных тканей человеческого организма продуцируют очень слабые электрические сигналы, с помощью которых осуществляется межклеточное взаимодействие (т. н. «электромагнитный шепот»). В некоторых работах сообщается о регистрации сверхслабых магнитных полей, возникающих при работе сердца и головного мозга и составляющих всего 0,00001 - 0,0000001 мкТл. Тем не менее, даже столь слабые сигналы чутко улавливаются клетками живых организмов. Так, выработка сосудистого условного рефлекса у человека возможна уже при интенсивности ЭМП, составляющей менее 0,0001 В/м.

Учитывая тот факт, что данные величины на десятки порядков меньше теоретически рассчитанных показателей интенсивности ЭМП, при которых возможны энергетические (тепловые) эффекты, можно предполагать, что сверхслабые ЭМП в биологических системах выполняют именно информационную функцию. При этом биологические эффекты, обусловленные информационными взаимодействиями, зависят уже не столько от величины энергии, вносимой в ту или иную систему, сколько от вносимой в нее информации. Если чувствительность воспринимающих систем достаточно высока, передача информации может осуществляться при помощи весьма малой энергии. Из признания информационной роли естественных ЭМП следует одно очень важное обстоятельство: для живого организма огромное значение имеет не столько величина воздействия ЭМП, сколько характер последнего [8].

Для объяснения биологического действия слабых (< 1 мТ) свехнизкочастотных (0,01-100 Гц) магнитных полей в последние годы предложены теории ионного циклотронного резонанса (А.Р. Либов) и ядерного параметрического резонанса (В.В. Леднев), согласно которым физиологические изменения в клетках могут быть обусловлены резонансным влиянием комбинированного магнитного поля (КМП), являющегося суперпозицией коллинеарных постоянного (им может быть геомагнитное поле ~50 мкТ) и переменного магнитных полей (ПМП и ПеМП), на движение катионов, в первую очередь Са2+, по ионным каналам (А.Р.Либов) или на связывание Са2+ такими внутриклеточными регуляторами, как кальмодулин или протеинкиназа С (В.В. Леднев). Эксперименты подтверждают резонансное влияние КМП, "настроенного" на резонансы Са2+, Mg2+ или К+, на разные биологические процессы. Но при ПМП ~50 мкТ резонансные частоты этих катионов соответствуют диапазону 20-64 Гц, поэтому резонансные теории не объясняют данных многих экспериментов 60-90 годов о влиянии СНЧ ПеМП других диапазонов: 0,001-0,02; 0,05-0,06; 0,1-0,3; 0,5-0,6; 3-12 Гц. Предполагая, что резонансные механизмы увеличения подвижности заряженных частиц в КМП справедливы и что поле действует не только на неорганические катионы, но и на другие заряженные частицы в клетках, можно расширить диапазон применения этих теорий. Вычисленные значения резонансных частот биохимических ионов (органических кислот, аминокислот, нуклеиновых кислот, макроэргов, фосфолипидов, некоторых белков и т.д.) попадают в диапазон 0,7-17 Гц, а их 2-я и 3-я гармоники - 0,2-8,5 Гц. Действие меньших частот поля могло бы объясняться влиянием КМП на крупные частицы типа небольших белков с малым зарядом порядка единицы. Следующие биохимические процессы рассматриваются как возможные "мишени" резонансного влияния КМП: реакции с переносом фосфатной группы РО43- включая фосфорилирование и дефосфорилирование белков, синтез и гидролиз макроэргических связей; связывание лигандов рецепторами (например, инозитолтрифосфата IР3 или нейромедиаторов) и диссоциация комплексов лиганд-рецептор; белок-белковые взаимодействия; взаимодействие основных белков (например, гистонов) с нуклеиновыми кислотами и т.п. Индуцированное магнитным полем изменение кинетической энергии заряженных частиц значительно меньше энергии тепловых флуктуации кТ. Однако предполагается, что КМП может оказать наибольшее влияние на движение частиц в существенно неравновесных условиях, когда для их перемещения (например, для сближения ADP3- и РО43- при синтезе АТР4- Н-АТР-синтазой), осуществляемого при конформационном переходе, в белковой макромолекуле кратковременно создается компенсирующее электрическое поле, позволяющее преодолеть отталкивание одновременных зарядов, и в этой бифуркационной точке небольшое смещение частицы может изменить поведение нелинейной системы. Также предполагается, что слабые сдвиги могут усилиться в клетках посредством механизма стохастического резонанса [21].