Смекни!
smekni.com

Теория Вероятностей (стр. 2 из 7)

Р(A)=m/n. (2.1)

В приведенном выше примере с колодой карт имеется n=52 равновозможных события: вынут одну какую-нибудь карту. Событию A–тому, что вынут короля, благоприятствуют m=4события: B1–вынут короля пик, B2–короля треф, B3–короля бубен, B4–короля червей. И только такие события Bi благоприятствуют событию A. При этом Aесть объединение событий Bi: A=U

Bi и события Biи Bjне пересекаются: Bi∩Bj=

,i≠j. Поэтому и принимают Р(А)=m/n=4/52=1/13.

Данное определение вероятности через благоприятствующие равновозможные непересекающиеся события называют часто классическим определением вероятности. Оно подтверждается на практике в виде закона больших чисел. Он проявляется следующим образом. Если сделать большое число n* испытаний, в каждом из которых может появиться событие A, то в результате оказывается, что число m*появлений события A оказывается как правило очень близким к величине Р(A), то есть выполняется с вероятностью очень близкой к единице – практически обязательно, с большой степенью точности приближенное равенство

m*/n* m/n=Р(A) (2.2)

Условной вероятностью события А по событию В называют величину Р|В), которая дает равенство РВ)=Р(A|B)·P(B).Смысл этого определения таков. Условная вероятность оценивает шансы осуществления события А, когда известно, что произошло событие В.

События А и В называются независимыми, если Р(A|B)=P(A). Тогда РВ)=Р(A)·P(B). Иначе говоря, события А и В независимы, когда вероятность осуществления события А не зависит от того, осуществилось или нет событие В. И наоборот, вероятность осуществления события В не зависит от осуществления события А.

Например, пусть бросают две не связанные друг с другом игральные кости. Пусть событие А–на первой кости выпало 4 очка. Событие В–на второй кости выпало 2 очка. Тогда Р(А)=1/6,Р(В)=1/6. События А и В естественно полагать независимыми. Стало быть, полагаем Р|B)=P(A), P(B|A)=P(B) иP(АВ)=P(A)·P(B)=1/6·1/6=1/36. То есть вероятность события С=АВ – на первой кости выпало 2 очка и при этом на второй кости выпало 4 очка равна 1/36.

Несколько событий A1,A2,…,Akназываются независимыми в совокупности, если Р(∩Ai)=Р(A1)·Р(A2)·…·Р(Ak). Важно заметить, что из попарной независимости всех событий АiиAj, i=1,…,k, j=1,…,k, i

j, вообще говоря, не следует независимость событий A1,A2,…,Akв совокупности. В этом можно убедиться на конкретном примере.

Подчеркнем еще раз, что физической основой для теории вероятностей является следующее статистическое свойство устойчивости частот. Буквой Аобозначим случайное событие, связанное с некоторым повторяющимся опытом. Пусть опыт повторяется n*раз при одинаковых условиях. Пусть

*–число появлений событий А. Относительная частота

появления событий А определяется формулой

(2.3)

Если неограниченно увеличивать число повторений опыта

, то относительная частота
будет устойчиво приближаться к некоторой фиксированной величине Р(А) и отклоняться от нее тем меньше и реже, чем больше n*. Эта величина и является вероятностьюP события А. Если в теории вероятность Р(А) определена правильно, то оказывается, что теоретическое число Р(А) совпадает с описанным выше практическим пределом. Это обстоятельствои позволяет численно оценивать вероятность случайного события в теории.

3.Формула Бейеса.

Пусть мы знаем вероятности событий А и В: Р(А) и Р(В). И пусть мы знаем условную вероятность события А по В: Р(A|B). Как найти условную вероятность P(B|A). На этот вопрос отвечает формула Бейеса.

Р(B|A)=P(A|B)·P(B)/P(A) (3.1)

Разумеется этой формулой можно пользоваться только при условии, что Р(А)

0.

Формула Бейеса выводится из следующих равенств

Р

А)=Р|A)·P(A) (3.2)

Р(A

B)=Р(A|B)·P(B) (3.3)

причем

Р

А)=Р(A
B)
(3.4)

так как пересечение событий В и А очевидно не зависит от порядка, в котором записаны А и В, т.е. В

А=A
B
. В случае Р(А)=0 принимаю обычно, что Р|A) есть величина неопределенная.

4.Формула полной вероятности.

Пусть имеем полную группу из n попарно непересекающихся событий

. То есть

,
(4.1)

,
,
(4.2)

Пусть мы знаем условные вероятности некоторого события А по Еi: Р|Ei) и вероятности Р(Ei), i=1,…,n. Справедлива следующая формула полной вероятности для события А

Р(А)=Р(A|E1)·P(E1)+…+P(A|En)·P(En) (4.3)

Доказательство этой формулы вытекает из следующих равенств

P(A)=P(

)=P(A
(
Ei))=P(A
E1)+…+P(A
En)=

=Р(A|E1)·P(E1)+…+P(A|En)·P(En) (4.4)

Из элементарной формулы Бейеса (3.1) и формулы полной вероятности (4.3) вытекает следующая более полная формула Бейеса

Рi|A)=P(A|Ei)·P(Ei)/(Р(A|E1)·P(E1)+…+P(A|En)·P(En)) (4.5)

5.Пример задачи для формулы полной вероятности.

Задача 5.1.

Пусть имеем три урны с шарами. В первой урне 7 белых и 3 черных шара. Во второй урне 7 белых и 7 черных шаров. В третьей урне 3 белых и 7 черных шаров. Наугад выбрали одну урну. Из этой урны наугад вынули шар.

Какова вероятность, что вынули белый шар?

Решение:

Пусть событие А – вынули белый шар, событие Ei – вынули шар из i-той урны, i=1,2,3. Вероятности P(Ei)полагаем равными, т.е. Р(Ei)=1/3. Вероятность Р(A|E1)=7/10, вероятность Р(А|E2)=7/14=1/2, вероятность Р|E3)=3/10. Таким образом по формуле полной вероятности (4.3) имеем

Р(А)=Р(A|E1)·Р(E1)+Р(A|E2Р(E2)+Р(A|E3Р(E3)=

=(1/3)·(7/10+5/10+3/10)=(1/3)·15/10=1/2 (5.1)

Ответ: Вероятность вынуть белый шар равна ½.

6.Пример задачи для формулы Бейеса.

Задача 6.1.

Пусть имеем те же урны с теми же наборами шаров, как и в задаче (5.1). Снова из выбранной наугад урны выбрали наугад шар. Оказалось, что вынули черный шар.

Какова вероятность, что его вынули из третьей урны?

Решение:

Пусть В – событие, состоящее в том, что вынули черный шар. События Ei те же, что и в решении задачи (5.1). Интересующая нас вероятность есть условная вероятность Р(E3|B). По формуле Бейеса (4.5) имеем

Р(Е3|B)=P(B|E3)·P(E3)/(P(B|E1)·P(E1)+P(B|E2)·P(E2)+P(B|E3)·P(E3)) (6.1)

У нас: Р(Ei)=1/3, i=1,2,3, P(B|E1)=3/10, P(B|E2)=1/2, P(B|E3)=7/10. Таким образом, получаем