Смекни!
smekni.com

Теория Вероятностей (стр. 5 из 7)

из (12.6) получаем следующее неравенство П.Л.Чебышева

Р

(12.8)

Таким образом, из (12.8) получается закон больших чисел П.Л.Чебышева:

Для любого сколь угодно малого положительного числа ε и числа β<1 найдется такое число N, что при числе испытаний n>N, будет справедливо неравенство

Р

(12.9)

В самом деле, согласно (12.8) достаточно выбрать в качестве числа Nнаименьшее из натуральных чисел, удовлетворяющих неравенству

, то есть

(12.10)

Это означает следующее. Какие бы числа

и
мы ни выбрали, если сделать количество n независимых испытаний больше, чем число N, то среднее значение случайной величины будет отличаться от математического ожидания меньше, чем на ε с вероятностью большей, чем β. Иначе говоря, при неограниченном увеличении числа независимых испытаний среднее значение случайной величины стремится к математическому ожиданию Е с вероятностью, приближающейся к единице.

13.Испытания по схеме Бернулли.

Так называется следующая серия независимых испытаний. Пусть производится n испытаний. В i-том испытании может осуществиться случайное событие Ai с вероятностью Рi,i=1,…,n. Все события Аi независимы в совокупности. То есть вероятность события Аi не зависит от того, осуществляются или нет события Аj,j=1,…,n, j

i. Рассмотрим здесь такой частный случай, когда все вероятности Рiравны друг другу и равны p,0‹p‹1. То есть

Рi)=p, P(Ai*)=q, q=1-p, 0‹p‹1, 0‹q‹1, i=1,…,n (13.1)

Например, пусть испытания состоят в том, что случайная точка

в i-том испытании обязательно появляется в квадрате со стороной равной единице. Событие Аi состоит в том, что точка
оказывается в четверти круга, вписанного в квадрат и имеющего радиус равный единице (см.раздел7). Согласно (7.2) имеем

Р(Ai)=p=

(13.2)

Справедливо следующее утверждение.

Теорема Бернулли: Пусть производится nиспытаний по схеме Бернулли. Пусть события Аi осуществились в m испытаниях.

Для любых чисел

и
найдется такое натуральное число N, что при числе испытаний n>N будетсправедливо неравенство

P(|m/n–p|<

)>
(13.3)

В самом деле, свяжем с i-тым испытанием случайную величину

. Пусть эта величина принимает значение равное единице, если осуществляется событие Аi, и
принимает значение равное нулю, если событие Аiне осуществляется, т.е. осуществляется противоположное событие Аi*. Вычислим математическое ожидание Еiи дисперсию Di случайной величины
. Имеем

p
q
=p (13.4)

p
p
p
q
q
p+p
q=pq∙(q+p)=pq∙1=pq
(13.5)

Так как в нашем случае

(13.6)

то из закона больших чисел (12.9),(12.10) получаем неравенство (13.3), если только

(13.7)

Это и доказывает теорему Бернулли.

Например, если мы хотим проверить теорему Бернулли на примере вычисления числа π с точностью до

с вероятностью большей, чем
, то нам надо сделать испытания по схеме Бернулли в соответствии с разделом 7, т.е. получить согласно текущему разделу неравенство

P(|m/n–π/4|<0.01)>0.99 (13.8)

Для этого согласно (13.7) достаточно выбрать число

(13.9)

с большим запасом.

Такое испытание было сделано на компьютере по программе, приведенной в следующем разделе. Получилось

4∙m/n=3.1424 (13.10)

Мы знаем, что число π=3.1415925626…. То есть действительно получилось число с точностью по крайней мере до 0.01.

14.Программа вычисления числа π по схеме Бернулли.

CLS

INPUT "Введите n=", n

RANDOMIZE

FOR i = 1 TO n

x = RND

y = RND

IF (x * x + y * y) < 1 THEN m = m + 1 ELSE m = m

NEXT i

pi = 4 * m / n

PRINT "pi = ", pi

15.Метод Монте-Карло.

Испытания по схеме Бернулли составляют основу вычислительного метода, который предложил Фон-Нейман для расчета сложных процессов. Например, для расчетов при создании атомной бомбы. Этот метод он назвал методом Монте-Карло в честь города, в котором идет игра в рулетку. Суть этого метода состоит в том, что подбираются такие испытания по схеме Бернулли, в которых вероятности событий Аiи определяют интересующую вычислителя величину. Простейший пример вычисления по методу Монте-Карло и приведен в разделах 13,14 для числа π. Особенно удобно вычислять методом Монте-Карло площади и объемы сложных фигур и тел.

16.Стрельба по вепрю.

Задача 16.1.:

Три охотника стреляют по вепрю. Известно, что первый охотник попадает в цель с вероятностью 0.7. Второй – с вероятностью 0.5. Третий – с вероятностью 0.3. Результат стрельбы каждого из них не зависит от результатов стрельбы других. Все три охотника дали один залп.

Какова вероятность, что в вепря попали 2 пули?

Решение:

Назовем попадание первого охотника событием А1, попадание второго – А2, попадание третьего – А3.

Для того, чтобы попали две пули необходимо и достаточно, чтобы осуществилось одно и только одно из следующих трех несовместных событий:

В1-первый попал, второй попал, третий промазал, В1=А1

А2
А3*

В2-первый попал, второй промазал, третий попал, В2=А1

А2*
А3

В3-первый промазал, второй попал, третий попал, В3=А1*

А2
А3

Так как события попадания для разных стрелков независимы, то вероятности попадания равны произведению вероятностей. Поэтому

Р(В1)=Р(А1)∙Р(А2)∙Р(А3*)=0.7∙0.5∙0.7=0.245

Р(В2)=Р(А1)∙Р(А2*)∙Р(А3)=0.7∙0.5∙0.3=0.105

Р(В3)=Р(А1*)∙Р(А2)∙Р(А3)=0.3∙0.5∙0.7=0.105

Интересующее нас событие С=В1

В2
В3
. Так как события В1,В2 и В3 несовместны, то вероятность объединения равна сумме вероятностей событий Вi,i=1,2,3

Р(С)=Р(В1)+Р(В2)+Р(В3)=0.245+0.105+0.105=0.455 (16.1)

Ответ: Вероятность, что попали 2 пули равна 0.455.

Задача 16.2.:

Те же охотники дали залп по другому вепрю. Известно, что попали 2 пули.

Какова вероятность, что попал первый охотник?

Решение:

Интересующая нас вероятность есть условная вероятность Р(А1|С) события А1 при условии, что произошло событие С. По формуле Бейеса имеем

Р(А1|C)=P(C|A1)∙P(A1)/P(C) (16.2)

По определению условной вероятности P(C|A1) (3.1) и (3.2) имеем