Смекни!
smekni.com

Теория информации (стр. 20 из 29)

Нам надлежит определить число проверочных разрядов и номера информационных разрядов, входящих в каждое из равенств для определения символов в проверочных разрядах.

Разложим группу 2n всех n-разрядных комбинаций на смежные классы по подгруппе 2k разрешенных n-разрядных кодовых комбинаций, проверочные разряды в которых еще не заполнены. Помимо самой подгруппы кода в разложении насчитывается 2n-k – 1 смежных классов. Элементы каждого класса представляют собой суммы по модулю 2 комбинаций кода и образующих элементов данного класса. Если за образующие элементы каждого класса принять те наиболее вероятные для заданного канала связи вектора ошибок, которые должны быть исправлены, то в каждом смежном классе сгруппируются кодовые комбинации, получающиеся в результате воздействия на все разрешенные комбинации определенного вектора ошибки. Для исправления любой полученной на выходе канала связи кодовой комбинации теперь достаточно определить, к какому классу смежности она относится. Складывая ее затем (по модулю 2) с образующим элементом этого смежного класса, получаем истинную комбинацию кода.

Ясно, что из общего числа 2n – 1 возможных ошибок групповой код может исправить всего 2n-k – 1разновидностей ошибок по числу смежных классов.

Чтобы иметь возможность получить информацию о том, к какому смежному классу относится полученная комбинация, каждому смежному классу должна быть поставлена в соответствие некоторая контрольная последовательность символов, называемая опознавателем (синдромом).

Каждый символ опознавателя определяют в результате проверки на приемной стороне справедливости одного из равенств, которые мы составим для определения значений проверочных символов при кодировании.

Ранее указывалось, что в двоичном линейном коде значения проверочных символов подбирают так, чтобы сумма по модулю 2 всех символов (включая проверочный), входящих в каждое из равенств, равнялась нулю. В таком случае число единиц среди этих символов четное. Поэтому операции определения символов опознавателя называют проверками на четность. При отсутствии ошибок в результате всех проверок на четность образуется опознаватель, состоящий из одних нулей. Если проверочное равенство не удовлетворяется, то в соответствующем разряде опознавателя появляется единица. Исправление ошибок возможно лишь при наличии взаимно однозначного соответствия между множеством опознавателей и множеством смежных классов, а следовательно, и множеством подлежащих исправлению векторов ошибок.

Таким образом, количество подлежащих исправлению ошибок является определяющим для выбора числа избыточных символов п – k . Их должно быть достаточно для того, чтобы обеспечить необходимое число опознавателей. Если, например, необходимо исправить все одиночные независимые ошибки, то исправлению подлежат п ошибок:

000…01

000…10

……….

010…00

100…00

Различных ненулевых опознавателей должно быть не менее п. Необходимое число проверочных разрядов, следовательно, должно определяться из соотношения

2n-k-1

nили 2n-k-1

Если необходимо исправить не только все единичные, но и все двойные независимые ошибки, соответствующее неравенство принимает вид

2n-k-l

+

В общем случае для исправления всех независимых ошибок кратности до s включительно получаем

2n-k-l

+
+…+

Стоит подчеркнуть, что в приведенных соотношениях указывается теоретический предел минимально возможного числа проверочных символов, который далеко не во всех случаях можно реализовать практически. Часто проверочных символов требуется больше, чем следует из соответствующего равенства.

Одна из причин этого выяснится при рассмотрении процесса сопоставления каждой подлежащей исправлению ошибки с ее опознавателем.

4.8.1 Составление таблицы опознавателей

Начнем для простоты с установления опознавателей для случая исправления одиночных ошибок. Допустим, что необходимо закодировать 15 команд. Тогда требуемое число информационных разрядов равно четырем. Пользуясь соотношением 2n-k- 1= п, определяем общее число разрядов кода, а следовательно, и число ошибок, подлежащих исправлению (n = 7). Три избыточных разряда позволяют использовать в качестве опознавателей трехразрядные двоичные последовательности.

В данном случае ненулевые последовательности в принципе могут быть сопоставлены с подлежащими исправлению ошибками в любом порядке. Однако более целесообразно сопоставлять их с ошибками в разрядах, начиная с младшего, в порядке возрастания двоичных чисел (табл. 4.6).

Таблица 4.6.

Векторы ошибок Опознаватели Векторы ошибок Опознаватели
0000001 001 0010000 101
0000010 010 0100000 110
0000100 011 1000000 111
0001000 100

При таком сопоставлении каждый опознаватель представляет собой двоичное число, указывающее номер разряда, в котором произошла ошибка.

Коды, в которых опознаватели устанавливаются по указанному принципу, известны как коды Хэмминга.

Возьмем теперь более сложный случай исправления одиночных и двойных независимых ошибок. В качестве опознавателей одиночных ошибок в первом и втором разрядах можно принять, как и ранее, комбинации 0...001 и 0...010.

Однако в качестве опознавателя одиночной ошибки в третьем разряде комбинацию 0...011 взять нельзя. Такая комбинация соответствует ошибке одновременно в первом и во втором разрядах, а она также подлежит исправлению и, следовательно, ей должен соответствовать свой опознаватель 0...011.

В качестве опознавателя одиночной ошибки в третьем разряде можно взять только трехразрядную комбинацию 0...0100, так как множество двухразрядных комбинаций уже исчерпано. Подлежащий исправлению вектор ошибки 0...0101 также можно рассматривать как результат суммарного воздействия двух векторов ошибок 0...0100 и 0...001 и, следовательно, ему должен быть поставлен в соответствие опознаватель, представляющий собой сумму по модулю 2 опознавателей этих ошибок, т.е. 0...0101.

Аналогично находим, что опознавателем вектора ошибки 0...0110 является комбинация 0...0110.

Определяя опознаватель для одиночной ошибки в четвертом разряде, замечаем, что еще не использована одна из трехразрядных комбинаций, а именно 0...0111. Однако, выбирая в качестве опознавателя единичной ошибки в i-м разряде комбинацию с числом разрядов, меньшим i, необходимо убедиться в том, что для всех остальных подлежащих исправлению векторов ошибок, имеющих единицы в i-м и более младших разрядах, получатся опознаватели, отличные от уже использованных. В нашем случае подлежащими исправлению векторами ошибок с единицами в четвертом и более младших разрядах являются: 0...01001, 0...01010, 0...01100.

Если одиночной ошибке в четвертом разряде поставить в соответствие опознаватель 0...0111, то для указанных векторов опознавателями должны были бы быть соответственно

0…0111
0…0111
0…0111

0…0001 0…0010 0…0100

_______ ________ _______

0…0110 0…0101 0…0011

Однако эти комбинации уже использованы в качестве опознавателей других векторов ошибок, а именно: 0...0110, 0...0101, 0...0011.

Следовательно, во избежание неоднозначности при декодировании в качестве опознавателя одиночной ошибки в четвертом разряде следует взять четырехразрядную комбинацию 1000. Тогда для векторов ошибок

0...01001, 0...01010, 0...01100

опознавателями соответственно будут:

0...01001, 0...01010, 0...01100.

Аналогично можно установить, что в качестве опознавателя одиночной ошибки в пятом разряде может быть выбрана не использованная ранее четырехразрядная комбинация 01111.

Действительно, для всех остальных подлежащих исправлению векторов ошибок с единицей в пятом и более младших разрядах получаем опознаватели, отличающиеся от ранее установленных:

Векторы ошибок Опознаватели

0...010001 0…01110

0...010010 0…01101

0...010100 0…01011

0...011000 0…00111

Продолжая сопоставление, можно получить таблицу опознавателей для векторов ошибок данного типа с любым числом разрядов. Так как опознаватели векторов ошибок с единицами в нескольких разрядах устанавливаются как суммы по модулю 2 опознавателей одиночных ошибок в этих разрядах, то для определения правил построения кода и составления проверочных равенств достаточно знать только опознаватели одиночных ошибок в каждом из разрядов. Для построения кодов, исправляющих двойные независимые ошибки, таблица таких опознавателей определена с помощью вычислительной машины вплоть до 29-го разряда [Теория кодирования. Сборник. – М.:Мир, 1964]. Опознаватели одиночных ошибок в первых пятнадцати разрядах приведены в табл. 4.7.