Смекни!
smekni.com

Методологические подходы компьютерного поиска лекарственных веществ (стр. 6 из 7)

Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

Действие ГАМК в ЦНС осуществляется путём её взаимодействия со специфическими ГАМКергическими рецепторами, которые в последнее время подразделяют на ГАМК-А- и ГАМК-Б-рецепторы и др. В механизме действия целого ряда центральных нейротропных веществ (снотворных, противосудорожных, судорожных и др.) существенную роль играет их агонистическое или антагонистическое взаимодействие с ГАМК-рецепторами. Установлена тесная связь между ГАМКергическими и бензодиазепиновыми рецепторами. Бензодиазепины потенцируют действие ГАМК.

Наличие ГАМК в ЦНС было обнаружено в середине 50-х годов, вскоре был осуществлен её синтез. В конце 60-х годов под названием «Гаммалон» ГАМК была предложена для применения в качестве лекарственного средства за рубежом, затем – под названием «Аминалон» – в России.

По экспериментальным данным, ГАМК при введении в организм плохо проникает через гематоэнцефалический барьер, однако есть свидетельства того, что ГАМК транспортируется в мозг с помощью специфических мембранных транспортеров GAT2 и BGT-1 (PMID: 1159850). При применении ГАМК для лечебных целей при наличии церебральной патологии установлено, что она улучшает динамику нервных процессов в головном мозге, мышление, память, оказывает мягкое психостимулирующее действие.

На этом этапе моделирования механизма рецепции был проведен анализ наиболее предпочтительной конформации ГАМК с помощью программы HyperChemV 6.0. Сейчас в мире достаточно много современных вычислительных комплексов, реализующих методы квантовой химии и молекулярной динамики, однако, для широкого круга пользователей наиболее доступно использование этих методов обеспечивается известной квантово-химической и молекулярно-динамической программой HyperChem.

Программа HyperChemможет выполнять расчеты энергии систем и их равновесной геометрии методом молекулярной механики, полуэмпирическими квантово-химическими методами. Полуэмпирические методы расчета можно использовать для всех типов расчетов. Полуэмпирические методы решают уравнение Шредингера для атомов и молекул с использованием определенных приближений и упрощений. Все методы этой группы характеризуются тем, что: расчет ведется только для валентных электронов; пренебрегаются интегралы определенных взаимодействий; используются стандартные не оптимизированные базисные функции электронных орбиталей и используются некоторые параметры, полученных в эксперименте. Экспериментальные параметры устраняют необходимость расчетов ряда величин и корректируют ошибочные результаты приближений.

Анализ наиболее предпочтительной конформации ГАМК проводился полуэмпирическим методом РМ 3, это один из наиболее точных методов. Используется для органических молекул, содержащих элементы из главных подгрупп 1 и 2 групп периодической системы. Этот метод позволяет получать качественные результаты, для молекул, содержащих как азот, так и кислород. Вычисляет электронную структуру, оптимизирует геометрию, рассчитывает полную энергию и теплоты образования. Для подтверждения необходимо построение молекул субъединиц ГАМК-рецептора по известной аминокислотной последовательности. Данные о строении рецептора ГАМК были получены из базы данных по трехмерной структуре биологических макромолекул RCSB.PDB (ProteinDataBank). Полученные данные были загружены в программу DeepView– TheSwiss– PdbViewerv. 3.7 разработанной одной из ведущих в мире фармацевтических компаний GlaxoSmithKline, для молекулярного моделирования и визуализации веществ белковой структуры и нуклеиновых кислот. В связи с малой производительностью рабочей вычислительной системы и не возможностью детального изучения изменения ориентации двойного слоя липидных и фосфолипидных молекул, что должно приводить к изменению мембранной проводимости за счет образования пор в белковой мембране, было сделано допущение, которое основывается на изменение пространственной ориентации молекул медиатора и рецептора вследствие изменения электростатической потенциальной энергии. В молекуле рецептора, с помощью программы HyperChem, был выделен сайт связывания медиатора с рецептором. Пространственное строение сайта связывания оптимизировалось при помощи молекулярной механики. Была определена карта плотности электростатических потенциалов сайта. Исходя из изложенных выше представлений был произведен докинг характерного лиганда сайта в полученную модель канала. Метод комплементарности (докинг) заключается в подборе низкомолекулярного объекта, наилучшим образом соответствующего «посадочному месту» высокомолекулярного объекта. При этом считается, что низкомолекулярного объект конформационно подвижен, а высокомолекулярный – нет, так как характерные времена конформационных движений высокомолекулярного объекта много больше таковых низкомолекулярного. Малая молекула одновременно приближается к большой по вектору, соединяющему центр масс малой молекулы и «посадочное место» большой.Докинг лигандов ГАМК к белку проводился вручную с последующей полной оптимизацией геометрии лиганд-белкового комплекса. Комплекс вытянутой конформации ГАМК после взаимодействия с сайтом рецептора начинает изменять свою геометрическое строение, изменяя при этом строение рецептора и ориентацию двойного слоя липидных и фосфолипидных молекул

Работы по созданию лекарственного средства

На следующем этапе предпринята попытка создать новый лекарственный препарат на основе дикаина. Комплексная работа выполнена выпускником Биотехнологического факультета Шульгиным С.В., в которой реализованы все этапы технологии разработки нового лекарственного вещества.

Создание менее токсичного аналога дикана

В настоящее время клиническое моделирование все более уверенно входит в практику технологии создания новых синтетических лекарственных средств. Предварительно проверенный компьютерный скрининг экономит время, материалы и силы при аналоговом поиске лекарственных препаратов. В качестве объекта исследования выбран местноанестезирующий препарат дикаина, который имеет более высокий уровень токсичности в ряду своих аналогов, но при этом незаменим в глазной и оториноларингологической практике. Целью исследования является разработка новых дикаиноподобных молекулярных структур, обладающих меньшей токсичностью с сохранением или усилением местноанестезирующего эффекта. Дикаин относится к классу сложных эфиров п-аминобензойной кислоты (β-диметиламиноэтиловый эфир п-бутиламинобензойной кислоты гидрохлорид). Расстояние С-N в 2-аминоэтанольной группе определяет двухточечный контакт молекулы дикаина с рецептором через диполь-дипольное и ионное взаимодействие. В основу модифицирования молекулы дикаина для создания новых анестетиков нами положен принцип введения химических группировок и фрагментов в существующий анестезиофор, которые усиливают взаимодействие вещества с биорецептором, снижают токсичность и дают метаболиты с положительным фармакодействием. Исходя из этого нами предложены следующие варианты новых молекулярных структур:

– в бензольное кольцо введена «облагораживающая» карбоксильная группа, диметиламиногруппа замещена на более фармакоактивную диэтиламиногруппу;

– алифатический н-бутильный радикал замещен на адреналиновый фрагмент;

– ароматическая основа п-аминобензойной кислоты заменена на никотиновую кислоту;

– бензольное кольцо замещено на пиперидиновое, характерное для эффективного анестетика промедол.

В работе выполнено компьютерное моделирование всех указанных структур с применением программы HyperChem.

1). Проведено графическое построение молекул, расчет и оптимизация геометрии молекул, исследовано распределение электростатического потенциала на всех радикальных структурах.

На слайдах представлены молекулы анестетиков, визуализированы стехиометрические особенности строения молекул и показано распределение электростатического потенциала, зеленым цветом положительный знак электростатического потенциала, красным цветом – отрицательный знак.

2). В работе выполнен расчет изменения потенциальной энергии. Один из графиков структуры, представлен на слайде.

3). С помощью программы HyperChem рассчитаны длины связей и валентные углы различными методами и проведено сравнение со справочными значениями.

Один из вариантов

Видно, что расчет по всем методам коррелируется со справочными данными, но лучше всего по методу MNDO. В работе выполнено исследование биологической активности всех молекулярных структур с помощью PASS программы. Определен спектр биологической активности по видам фармакологического действия. Суммарно характеристики всех молекулярных структур представлены в таблицах. Из таблицы видно, что порог ингибирования Pi практически для всех видов биологической активности незначителен, поэтому в дальнейшем сравнительный анализ фармакоактивности проводили по порогу активности Pa. Одновременно переводили значения Pa программы PASS в условные проценты относительно базовой структуры – дикаина, принимая его характеристики за 100%. Результаты представлены в таблице. Сравнивая характеристики фармакологических структур и их соотношение, по анестезирующему эффекту, исследуемые структуры можно представить на следующей диаграмме. Наибольший анестезирующий эффект проявляет структура 4, а наименьшей токсичностью обладает структура 3. Результаты машинного анализа новых лекарственных веществ на основе молекулы дикаина, с целью снижения токсичности и усиления местноанестезирующего эффекта позволяют исследуемые структуры расположить в следующий ряд. По результатам выполненной научно-исследовательской работы можно сделать выводы: