Смекни!
smekni.com

Гели и их использование в косметологии (стр. 2 из 4)

Неэластичные студни впитывают любую смачиваю­щую их жидкость, при этом объем их почти не изме­няется. Эластичные студни поглощают не все смачиваю­щие их жидкости, а только некоторые. Чаще всего та­кими жидкостями являются те, в которых вещество студня может существовать также в виде золя, и те, которые сходны с ними по своему химическому составу. Здесь наблюдается избирательная способность к впи­тыванию. Избирательное поглощение жидкости эластич­ным студнем сопровождается сильным увеличением его объема. Это явление называется набуханием. Способ­ность к набуханию — наиболее характерное свойство вы­сокомолекулярных веществ, являющееся одним из ме­тодов получения гелей. Желатин и агар-агар набухают только в воде или в водных растворах и не набухают в жидких органических веществах. Каучук набухает в сероуглероде, бензоле и его производных, но не набу­хает в воде.

Набухание студня часто приводит к образованию золя. Так, гуммиарабик в воде,

каучук в бензоле сначала набухают, а затем переходят в коллоидный раст­вор. Нередко процесс ограничивается одним набуханием и золь не образуется (например, набухание целлю­лозы в воде, вулканизированного каучука в органиче­ских жидкостях).

Студни первого рода называются неограниченно на­бухающими, студни второго рода — ограниченно набу­хающими студнями. Желатин и агар-агар в холодной воде представляют собой ограниченно набухающие студни, а при повышении температуры становятся не­ограниченно набухающими.

Объем жидкости, поглощенной гелем при набухании, часто значительно превосходит массу сухого вещества студня, вследствие чего происходит увеличение его массы и объема. Увеличение объема студня служит при­чиной давления набухания, т. е. давления, которое ока­зывает набухающее вещество при увеличении своего объема на встречаемые им препятствия.

При набухании наряду с увеличением объема студ­ня происходит сжатие всей системы, т. е. общий объем всей набухшей системы меньше суммы исходных объе­мов сухого студня и жидкости. Это явление носит на­звание контракции. Набухание сопровождается выде­лением теплоты, которая называется тепловым эффек­том набухания.

Набухание зависит от температуры, давления и при­роды растворенных веществ. При набухании желатина, агар-агара и других гидрофильных гелей большое зна­чение имеет присутствие в воде электролитов.

Действие кислот и щелочей на набухание опреде­ляют преимущественно величиной рН раствора. В изоэлектрической точке студни обнаруживают минимум на­бухания; при повышении концентрации водородных или гидроксидионов набухание сначала увеличивается, до­стигает определенного максимума, а затем при очень больших концентрациях ионов Н+ и ОН~ снова начи­нает падать. Минимум набухания желатина проявля­ется при значении рН, приблизительно равном 4,7, а максимум набухания при значении рН, приблизитель­но равном 3,2. На набухание оказывают влияние также и нейтральные соли.

4. Факторы студне - и гелеобразования

Гелеобразование в коллоидных системах и студнеобразование в растворах органических полимеров зависят от ряда факторов, из которых наиболее существенны размеры и фор­ма частиц или макромолекул, соотношение дисперсной фазы и дисперсионной среды (концентрация), температура, время и присутствие электролитов.

Гелеобразование напоминает процесс коагуляции коллоидных систем. Все факторы, обус­ловливающие коагуляцию, в той или иной степени влияют и на процесс образования гелей.

Однако: между коагуляцией и студне- и гелеобразованием имеется и существенная разница. Коагулируя, коллоидные частицы соединяются в компактные агрегаты, а коллоидный раствор разделяется на две фазы: жидкую—дисперсионную среду и более или менее твердую — коагель. При студне- и гелеобразовании подобного разделения нет, растворитель пол­ностью остается в системе, концентрация дисперсной фазы во всех частях геля и студня остается неизменной.

Форма частиц дисперсной фазы коллоид­ных систем, размеры и разветвленность молекул полимеров существенно влияют на студне- и геле­образование. Экспериментально установлено, что гели образуются в золях, частицы которых обладают резко выра­женной анизодпаметричной формой, т. е. палочкообразны, игольчаты или листочкоподобны. Чем ярче выражена анизодиаметричность, тем при меньшей концентрации золя легче образуется гель. Особенно легко, даже при малых концентра­циях, образуют студни высокомолекулярные соединения, у которых длина макромолекул достигает нескольких тысяч А ,и в тысячи раз превышает поперечные размеры.

Гелеобразование можно представить следующим образом. Удлиненные частицы дисперсной фазы в процессе кинетиче­ского движения сталкиваются и сцепляются друг с другом определенными участками. Такими участками обычно бывают концы удлиненных частиц или углы листочков, т. к. в этих местах толщина сольватной оболочки наименьшая и ниже значение С-потеициала.

Дисперсионная среда захватывается сеткой, как губкой, т. е. полностью иммоби­лизуется, благодаря чему система теряет текучесть и пере­ходит в твердообразное состояние. Следовательно, застуд­невание обусловливается не слиянием сольватных слоев, находящихся на частицах дисперсной фазы, а образованием сетчатых структур за счет взаимодействия активных участков частиц дисперсной фазы.

Зависимость застудневания от наличия на частицах не сольватированных или слабосольватированных участков под­тверждается тем, что с введением в коллоидную

систему ве­ществ, повышающих гидратацию (сольватацию), гелеобразо­вание затрудняется. С понижением сольватации частиц геле­образование, наоборот, облегчается. Таким образом, для образования геля необходимо, чтобы на частицах дисперсной фазы одновременно были и сольватированные и несольвати-рованные участки.

Структурообразование в растворах высокомолекулярных соединений происходит потому, что макромолекулы сцепля­ются активными группами, а их основные линейные цепи и боковые ответвления могут переплетаться («свойлачиваться»), создавая сетчатую структуру.

Концентрация оказывает существенное влияние на студне- и гелеобразование. При прочих равных условиях бо­лее концентрированные коллоиды и растворы высокомолеку­лярных соединений легче переходят в гели и студни, чем разбавленные. Так, например, 2°/о-ные и более концентрированные растворы желатина легко превращаются при комнатной температуре в студни. Растворы 0,5—1°/о-ные дают слабые, трудно сохраняющие форму студни, а еще более разбавлен­ные не желатинируются совершенно.

Большая зависимость студне- и гелеобразования от кон­центрации объясняется тем, что в более концентрированных системах уменьшается расстояние между частицами и макро­молекулами, благодаря чему увеличивается число столкнове­ний частиц и облегчается образование структур за счет их сцепления активными центрами.

В различных коллоидных системах и растворах полимеров минимальная концентрация геле- и студнеобразования зави­сит от природы дисперсной фазы. Так, глютин застудневает при 5%-ной концентрации, золь кремневой кислоты — при 3— 6%-ном содержании Si02, агар принимает студнеобразное строение при 0,1— 0,2%-ной концентрации, а германиевокислый кальций дает гель при содержании воды 99,935%. Понятно, что эти концентрации для различных систем могут меняться в зависимости от способа приготовления золя или раствора полимера, его чистоты и ряда других условий, но основной принцип зависимости желатинирования и гелеобразования от концентрации остается неизменным.

Температура также сильно влияет на процесс студне- и гелеобразования. С повышением температуры застудневание растворов полимеров обычно затрудняется. Растворы, не за­студневающие при комнатной температуре, при понижении температуры могут превратиться в твердые студни. Напри­мер, глютин при комнатной температуре застудневает в 5%-ном растворе, а при 0°С застудневает с уменьшением кон­центрации в двадцать раз. С другой стороны, нагревание весьма твердых студней, например, студня 10%-ного жела­тина, переводит их в легкотекучую жидкость.

Влияние температуры на процесс студне- и гелеобразова­ния объясняется тем, что

нагревание усиливает тепловое движение макромолекул или коллоидных частиц и ослабляет связи между ними.

Образование сетчатых структур из частиц дисперсной фазы идет тем легче, чем меньше скорость их движения, т. е. чем ниже температура.

Для каждой коллоидной системы и раствора полимера существует определенная температура, выше которой геле-и студнеобразование невозможно. В большинстве коллоидов чем выше концентрация, тем при более высокой температуре начнется гелеобразование.