Смекни!
smekni.com

Организация и содержание элективного курса "Основы теории вероятностей и математической статистики" в классах оборонно-спортивного профиля (стр. 13 из 17)

Решение. Пусть событие А – появление белого или черного шара. Разобьем это событие на более простые. Пусть В1 – появление белого шара, а В2 – черного. Тогда, А=В1+В2 по определению суммы событий. Следовательно Р(А)=Р(В1+В2). Так как В1 и В2 – несовместные события, то по теореме о вероятности суммы несовместных событий Р(В1+В2) = Р(В1)+Р(В2).

6.Вероятность суммы произвольных событий равна сумме их вероятностей без вероятности произведения событий

Р(А+В)=Р(А)+Р(В)-Р(АВ).

В общем случае данная формулы выглядит так:

.

Пример: Ведутся поиски двух преступников. Каждый из них независимо от другого может быть обнаружен в течение суток с вероятностью 0,5. Какова вероятность того, что в течение суток будет обнаружен хотя бы один преступник?

Решение. Пусть событие А – “обнаружен хотя бы один преступник”. Разобьем это событие на более простые. Пусть В1 – обнаружен первый преступник, а В2 – обнаружен второй преступник. Тогда, А=В1+В2 по определению суммы событий. Следовательно Р(А)=Р(В1+В2). Так как В1и В2 – совместные события, то по теореме о вероятности суммы событий

Р(В1+В2) = Р(В1)+Р(В2)-Р(В1 В2) = 0,5+0,5 – 0,25=0,75.

Занятие 6

1. Задумано двузначное число. Найти вероятность того, что задуманным числом окажется: а) случайно названное двузначное число: б) случайно названное двузначное число, цифры которого различны?

2. Монета брошена два раза найти вероятность, что хотя бы один раз появится герб.

3. В коробке имеется шесть одинаковых жетонов с различными номерами. По одному наудачу извлекают все кубики. Найти вероятность того, что номера извлеченных кубиков появятся в возрастающем порядке.

4. В ящике имеется 15 деталей, среди которых 10 окрашенных. Сборщик наудачу извлекает три детали. Найдите вероятность того, что извлеченные детали окажутся окрашенными.

5. В волейбольной команде 6 мастеров спорта и 4 кандидата. Наудачу выбранным семи человекам дали премию. Найти вероятность того, что среди получивших премию окажутся три кандидата в мастера спорта?

6. В коробке пять одинаковых изделий, причем три из них окрашены. Наудачу извлечены два изделия. Найти вероятность того, что среди двух извлеченных изделий окажутся: а) одно окрашенное изделие; б) два окрашенных изделия; в) хотя бы одно окрашенное изделие.

7. В ящике 10 деталей, из которых четыре окрашены. Сборщик наудачу взял три детали. Найти вероятность того, что хотя бы одна из взятых деталей окрашена.

8. Два стрелка стреляют в мишень. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго 0,8. Найти вероятность того, что при одном залпе в мишень попадет только один из стрелков.

Домашнее задание

1. Монету бросают два раза. Найти вероятность того, что хотя бы один раз появится герб.

2. Какова вероятность того, что из шести отмеченных чисел в карточке «Спортлото» (игра из 49) k чисел будут выигрышными.

3. Вероятность одного попадания в цель при одном залпе из двух орудий равна 0,38. Найти вероятность поражения цели при одном выстреле первым из орудий, если известно, что для второго орудия эта вероятность равна 0,8.

Занятие 7

1. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. Найти вероятность, того, что из двух проверенных изделий только одно стандартное.

2. Брошены три игральные кости. Найти вероятность следующих событий: а) на двух выпавших гранях появиться одно очко, а на третьей грани – другое число очков.

3. Вероятность попадания в мишень стрелком при одном выстреле равна 0,8. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью, меньшей 0,4 можно было ожидать, что не будет ни одного промаха?

4. В читальном зале имеется шесть учебников по теории вероятности, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

5. Среди 100 лотерейных билетов есть 5 выигрышных. Найти вероятность того, что 2 наудачу выбранные билета окажутся выигрышными.

6. В цехе работают 7 мужчин и три женщины. Наудачу отобраны три человека. Найти вероятность того, что все отобранные лица окажутся мужчинами.

7. Студент знает 20 из 25 вопросов программы. Найти вероятность того, что студент знает предложенные ему экзаменаторам три вопроса.

Домашнее задание

1. В ящике 10 деталей, среди которых шесть окрашенных. Сборщик наудачу извлекает четыре детали. Найти вероятность того, что все извлеченные детали окажутся окрашенными.

2. Вероятности того, что нужная деталь находится в первом, втором, третьем, четвертом ящике соответственно равны 0,6; 0,7; 0,8; 0,9. Найти вероятности того, что деталь содержится: а) не более чем в трех ящиках; б) не менее чем в двух ящиках.

Занятие 8

Определение. Совокупность событий А1, А2, …, Аn называется полной группой событий, если выполняются следующие условия:

а) она описывает все возможные исходы;

б) события попарно независимы и не совместны.

Пусть дано событие А, оно может наступить при появлении одного из несовместных Событий В1, В2,…, Вn, которые образуют полную группу. Нам также известны вероятности

,
, …,
. Как можно найти вероятность события А? Ответ на этот вопрос дает.

Вероятность события А, которое может наступить лишь при условии появлении одного из несовместных событий В1, В2,…, Вn, образующих полную группу, равна сумме произведений вероятности каждого из этих событий на собственную условную вероятность:

.

Эту формулу также называют формулой полной вероятности.

Пример: В проведении операции по освобождению заложников участвуют 2 группы снайперов: 10 человек с винтовкой ОП21 и 20 человек с АКМ47. Вероятность поражения из ОП21 – 0,85, а АКМ47 – 0,65. Найти вероятность того, что при одном выстреле произвольного снайпера преступник будет поражен.

Решение. Пусть событие А – “преступник поражен”. Разобьем это событие на более простые. Преступник может быть поражен либо из ОП21, либо из АКМ47. Вероятность того, что произвольный снайпер вооружен ОП21 (событие Н1) равна 10/30. Вероятность того, что произвольный снайпер вооружен АКМ47 (событие Н2) равна 20/30.

Вероятность того, что преступник поражен равна:

Составим задачу: Пусть дано событие А, оно может наступить при появлении одного из несовместных Событий В1, В2,…, Вn, которые образуют полную группу. Так как нам заранее не известно, какое событие наступит, их называют гипотезами. Допустим, что произведено испытание в результате, которого появилось событие А. Поставим своей задачей определить как изменились вероятности гипотез, в связи с тем что событие А уже наступило. Другими словами определим следующие условные вероятности:

,
, …,
.

Определить данные вероятности можно при помощи формулы Бейеса:

,

Заменив

получим:

.

Пример: На склад поступило 1000 подшипников. Из них 200 изготовлены на 1-м заводе, 460–на 2-м и 340 – на 3-м. Вероятность того, что подшипник окажется нестандартным, для 1-го завода равна 0,03, для 2-го – 0,02, для 3-го – 0,01. Взятый наудачу подшипник оказался нестандартным. Какова вероятность того, что он изготовлен 1-м заводом?

Решение: Пусть A – событие, состоящее в том, что взятый Подшипник нестандартный, а – Н1, Н2, Н3, гипотезы, что он изготовлен соответственно 1-м, 2-м или 3-м заводом. Вероятности указанных гипотез составляют : P(H1)=200/1000=0.2, P(H2)=460/1000=0.46, P(H1)=340/1000=0.34.

Из условия задачи следует, что р1Н1(А)=0,03; р2Н2(А)=0,02; р3Н3(А)=0,01.

Найдем вероятность того, что подшипник, оказавшийся нестандартным, изготовлен 1-м заводом. По формуле Бейеса имеем:

Занятие 9

1. Среди N экзаменационных билетов n «счастливых». Студенты подходят за билетами один за другим. У кого больше вероятность взять счастливый билет: у того, кто подошел первым, или у того, кто подошел вторым? Какова вероятность взять «счастливый» билет у последнего студента?

2. Экзаменационных билетов содержат по 2 вопроса, которые не повторяются. Экзаменующийся может ответить только на 25 вопросов. Определить вероятность того, что экзамен будет сдан, если для этого достаточно ответить на два вопроса из одного билета или на один вопрос из первого билета и на указанный дополнительный вопрос из другого билета.

3. Во время испытаний было установлено, что вероятность безотказной работы прибора при отсутствии повреждений равна 0,99, при перегреве – 0,95, при вибрации – 0,9, при вибрации и перегреве – 0,8. Найти вероятность P1 отказа этого прибора во время работы в жарких странах (вероятность перегрева – 0,2, вибрации – 0,1) и вероятность P2 отказа во время работы в передвигающейся лаборатории (вероятность перегрева – 0,1, вибрации – 0,3), если считать перегрев и вибрацию независимыми событиями.