Смекни!
smekni.com

Организация и содержание элективного курса "Основы теории вероятностей и математической статистики" в классах оборонно-спортивного профиля (стр. 5 из 17)

Теория вероятностей рассматривает именно такие события, при этом предполагается, что испытание может быть повторено любое количество раз.

Например, выполнение штрафного броска в баскетболе есть испытание, а попадание в кольцо – исход. Другой пример исхода – это выпадение определенного числа очков при бросании игральной кости. В отличии от других событий исходы еще называют элементарными событиями, желая подчеркнуть, что эти события состоят только из одного исхода и не делимы на более мелкие.

Далее следует сказать, что в теории вероятностей события обозначаются прописными (заглавными) латинскими буквами: A, B, C, D

После введения трех важных понятий: случайный эксперимент, случайное событие, исход, модно переходить к определению вероятности.

Первым должно быть рассмотрено статистическое понятие вероятности.

Рассмотрим некоторое количество испытаний, в результате которых появилось событие А. Пусть было произведено N испытаний, в результате которых событие А появилось ровно n раз. Тогда отношение

называют относительной частотой (частость).

При большом количестве повторений испытания частость событий мало изменяется и стабилизируется около определенного значения, а при небольшом количестве повторений она может принимать различные значения. Поэтому интуитивно ясно, что при большом количестве повторений испытания частость события будет стремиться к определенному числовому значению. Такое значение принято называть вероятностью события А и обозначают Р(А).

Таким образом, вероятностью случайного события А называется число Р(А), к которому приближается относительная частота этого события при большом повторении числа экспериментов.

В математике неограниченное число повторений принято записывать в виде предела при N стремящегося к бесконечности:

.

Данное определение называют статистическим определением вероятности. Далее следует объяснить, что найти вероятность с помощью этого определения нельзя, так как нет гарантий, что относительная частота будет к чему-то приближаться; также нельзя сказать, насколько много повторений эксперимента нужно сделать, чтобы полученная частота достаточно хорошо приближала вероятность.

Исходя из этого определения, учащиеся могут установить, что вероятность заключена в интервале:

. Так как n всегда больше либо равно N.

Следует предложить задания на проведение серии экспериментов с целью оценить вероятности возможных исходов эксперимента. При этом можно использовать групповую форму работы и в конце объединить результаты всех групп для получения выводов об относительной частоте событий. Примером такого задания может служить подбрасывание монеты. Это является простым и наглядным испытанием. Практика человека говорит о том, что при большом числе бросаний примерно в 50% испытаний выпадет «орёл», а в 50% – «решка».

После этого следует перейти к изучению классической вероятности. Введение другого определения можно обосновать тем, что не в каждом случае можно провести длинную серию экспериментов. В некоторых случаях вероятности событий могут быть легко определены исходя из условий испытаний. Здесь необходимо вспомнить понятия элементарного исхода.

Пусть испытание имеет n возможных исходов, то есть событий, которые могут появиться в результате данного испытания. При каждом повторении возможно появление только одного из данных исходов (то есть все n исходов несовместны). Кроме того, по условиям испытания нельзя сказать какие исходы появляются чаще других, то есть все исходы являются равновозможными. Допустим теперь что при n равновозможных исходах интерес представляет событие А, которое появляется только при m исходах и не появляется при остальных исходах. Принято говорить, что в данном испытании имеется n случаев, из которых m благоприятствуют появлению события А.

В таком случае вероятность можно вычислить, как отношение числа случаев благоприятствующих появлению события А (то есть m), к общему числу всех исходов n:

.

Данная формула представляет собой определение вероятности по Лапласу, которое пришло из области азартных игр, где теория вероятностей применялась для определения перспективы выигрыша.

После рассмотрения простейших примеров вычисления вероятности учащимся может показаться, что вычисление вероятностей любого события не вызывает особого труда, поэтому учителю нужно предостеречь учащихся от ошибок. Для этого учащимся может быть предложен следующий алгоритм при решении задач на нахождение вероятности.

1. Перечислить возможные исходы опыта (полное или частичное).

2. Обосновать равновозможность перечисленных исходов (можно опираться на прямые указания в тексте задачи: случайно, наугад и т.д.).

3. Вычислить общее количество исходов (то есть число n).

4. Описать благоприятные исходы для данного события и вычислить их количество.

5. Вычислить вероятность по формуле.

6. Оценить полученный результат.

На первых этапах следует предлагать задачи, в которых число исходов опыта можно пересчитать вручную, без использования формул комбинаторики. После получения ответа необходимо обсудить с учащимися его реальный смысл. Выяснить совпадает ли полученная величина с интуитивным представлением учеников о вероятности, удовлетворяет ли основным свойствам.

Для того чтобы определить вероятность нужно знать количество исходов, а также количество благоприятных исходов. Если количество испытаний мало, то можно вручную перебрать все исходы и выявить среди них благоприятные. Что делать в том случае, если количество испытаний велико?

В таком случае на помощь приходит комбинаторика.

Комбинаторика – раздел математики, который изучает различные комбинации и перестановки предметов [5]. Начинать изучение комбинаторики следует с введения простейших формул. Перед тем как дать ученикам формулу следует поставить какую-либо проблемную задачу, например, перед тем как дать учащимся формулу перестановок можно дать решить следующую задачу.

Сколько чисел можно составить из цифр 1, 2, 3?

Решая данную задачу систематическим перебором, мы найдем, что количество таких чисел будет равно шести. Далее следует изменить условие задачи, увеличив количество цифр до 10. И сказать, что решать данную задачу перебором нерационально, так как на это уйдет слишком много времени. Для решения задач такого вида используется следующая теорема.

Пусть имеется, k групп элементов, причем каждая группа элементов содержит определенное количество элементов, например, 1-ая содержит n1 элемент, 2-ая группа – n2 элементов, тогда i-я группа содержит ni элементов. Тогда общее число N способов, которыми можно произвести такой выбор, равняется

.

Учитель должен обратить внимание учащихся на то, что правило умножения подсчитывает упорядоченные наборы, то есть порядок в них важен.

Данную формулу можно применить к решению следующей задачи.

Сколько существует пятизначных натуральных чисел.

Решение. Как известно всего 10 цифр. Представим пятизначное число, как, где вместо первой звездочки можно подставить все цифры кроме 0, так как если подставим 0, то получим четырехзначное число (нам надо пятизначное). Вместо второй звездочки можно подставить любую из 10 цифр, аналогично вместо оставшихся можно подставлять любую из 10 цифр. Таким образом, у нас имеется 5 групп элементов, первая группа содержит 9 элементов, а оставшиеся 4 группы содержать по 10 элементов. Тогда, используя формулу, найдем количество пятизначных чисел:

.

Нужно дать несколько упражнений на вычисление выражений с факториалами, чтобы учащиеся лучше овладели навыками работы с ними.

Далее рассматривается теорема о выборе с учетом порядка.

Общее количество выбора k элементов из n элементов с учетом порядка определяется формулой

и называется числом размещений из n элементов по k элементов.

Приведем пример.

В областных соревнованиях по футболу участвует 8 команд. Требуется определить сколькими способами можно составить группу их 4 команд.

Другими словами, нам нужно выбрать 4 футбольных команды из 8 команд, то есть:

.

Далее рассматривается теорема о выборе без учета порядка.

Общее количество выборок в схеме выбора k элементов из n без возвращения и без учета порядка определяется формулой

и называется числом сочетаний из n элементов по k элементов.

Рассмотрим пример.

На занятии по физкультуре присутствовало 20 человек. Учитель попросил двух человек принести из раздевалки мячи. Сколькими способами можно выбрать учеников, для того чтобы они принесли мячи?

Решение. Порядок в котором будут выбраны ученики не существенен, следовательно:

способов.