Смекни!
smekni.com

Методы химического анализа (стр. 12 из 31)

J = J0 - Jп 3.8

Мощность падающего светового потока J0 и прошедшего через раствор светового потока J могут быть измерены экспериментальным путём. Величина потерь рассчитывается по выражению 3.9.

J / J0 = Т (3.9)

Отношение J / J0 указывает на степень пропускания раствором светового потока и называется прозрачностью, а иногда пропусканием раствора. Коэффициент Т показывает, какая доля светового потока прошла через раствор, и принимает значение от 0 до 1.

Чем больше поглощается световой поток, тем меньше J по сравнению с J0, тем больше величина коэффициента Т.

Величина обратная прозрачности (выражение 3.10) называется непрозрачностью или поглощением раствора. Отношение мощности света, поглощенного раствором, к мощности падающего света ( Jn / J0 ), называется поглощающей способностью.


1 / Т = J0 / J (3.10)

Логарифмированием выражения 3.10 рассчитывается оптическая плотность раствора (выражение 3.11). Она показывает степень поглощения излучения в зависимости от толщины слоя раствора и его окраски.

ℓgJ0 / J = Д = ℓg пL = L ℓgn , (3.11)

где: L – толщина поглощающего слоя;

ℓgn – постоянная величина, характерная для конкретного окрашенного раствора при прохождении через него света определённой длины;

Д – оптическая плотность (эту величину также называют абсорбционностью).

Выражение 3.11 отражает закон Бугера – Ламберта: слои вещества одинаковой толщины при прочих равных условиях всегда поглощают одинаковую долю падающего на них светового потока. Оптическая плотность вещества прямо пропорциональна толщине поглощающего слоя.

Позднее Бером было установлено, что поглощение света газами и растворами зависит от числа частиц в единице объёма, встречающихся на пути светового потока, т. е. от концентрации вещества в исследуемом растворе.

Закон Бугера – Ламберта – Бера устанавливает зависимость интенсивности поглощения света от концентрации вещества в растворе (С), толщины светопоглощающего слоя раствора(L) и молярного коэффициента поглощения света ( ε). Математическое выражение оптической плотности может быть представлено выражением 3.12. Оно получено экспериментальным путём, правильность его подтверждается с помощью математического аппарата.

Д = εL С (3.12)

Объединённый закон Бугера – Ламберта – Бера является основным законом поглощения света растворами, он трактуется следующим образом: оптическая плотность раствора зависит от концентрации и природы исследуемого вещества, а также толщины слоя раствора, через который проходит световой поток (поток электромагнитных колебаний).

Для наглядности зависимость оптической плотности от концентрации вещества в растворе принято выражать графически, рис. 3.2. Она представлена прямой линий, идущей из начала координат и соответствует уравнению

D = kC ,где k = εL ,а ε = k / 2,3.

Молярный коэффициент светопоглощения представляет оптическую плотность одномолярного раствора при толщине слоя светопоглощающего раствора 1 см.

ε = Д / LС (3.13)

Если С = 1 моль/л, L = 1 см, то Д = ε

Величина молярного коэффициента поглощения ε:

зависит - от длины волны проходящего света, температуры раствора и природы растворённого вещества;

не зависит - от толщины поглощающего слоя и концентрации растворённого вещества.


Д


α

Д3

tgα = ε

Д2

Д1


C1C2C3C

Рис. 3.2. Зависимость оптической плотности от концентрации вещества

3.5.2 Молярный коэффициент светопоглощения

Молярный коэффициент светопоглощения отражает индивидуальные свойства вещества (окрашенного) и является их характеристикой. Для разных веществ он имеет различную величину. У слабоокрашенных веществ (например, хромат калия) молярный коэффициент светопоглощения составляет 400 – 500, а у сильноокрашенных (например, дитизонат цинка) - 94 000.

Следует иметь в виду, что значение молярного коэффициента поглощения, как правило, не превышает значения 100 000 – 120 000 для наиболее интенсивно окрашенных соединений. Его значение определяется экспериментально спектрофотометрическими методами.

Молярный коэффициент светопоглощения является характеристикой чувствительности фотометрических реакций, чем больше его величина, тем чувствительнее и точнее определение. При выборе реактивов, дающих цветовую реакцию с определяемым веществом, выбирают тот, который образует соединения с максимальным коэффициентом светопоглощения.

Из закона Бугера–Ламберта–Бера вытекают два вывода, которые имеют практическое значение.

Первый вывод. При одинаковой интенсивности окраски одного и того же вещества их концентрации обратно пропорциональны толщине поглощающих слоёв.

Доказательство. Предположим, что имеются два раствора одного и того же вещества, но с разной концентрацией. Согласно закону Бугера-Ламберта-Бера (см. выражение 3.11) оптическая плотность (Д) каждого раствора может быть представлена следующими математическими выражениями:

ℓg

= εL1C1 ℓg
= εL2C2

Принимая во внимание, что исследуемые растворы одинаково освещены, т. е. на них воздействует световой поток интенсивностью равной J0. Выравнивание световых потоков (J1 = J2), прошедших через растворы может быть достигнуто подбором толщин просвечиваемых растворов L1 и L2. Исходя из этого, имеют место следующие равенства:

ℓg

= ℓg
следовательно εL1C1 = εL2C2, а так как ε1 = ε2 тогда L1C1 = L2C2.

Таким образом — при одинаковой интенсивности окраски одного и того же вещества их концентрации обратно пропорциональны толщине поглощающих слоёв.

Второй вывод. При условии равенства толщин исследуемого раствора и стандартного раствора одного и того же вещества (L1 = L2) зависимость между их оптической плотностью и концентрацией прямопропорциональна:


=

Оптическая плотность раствора, содержащего несколько окрашенных веществ, обладает свойством аддитивности, которое называют законом аддитивности светопоглощения (аддитивность-лат. additio прибавление-результат получаемый путём сложения). В соответствии с этим законом поглощение света, каким - либо веществом не зависит от присутствия в растворе других веществ, так как каждое из окрашенных веществ будет вносить свою величину в экспериментально определяемую оптическую плотность — Д.

Д = Д1 + Д2 + Д3, т. к. L-const, то имеет место сумма (ε1C1 + ε2C2 + ε3C3)

3.5.3 Спектры поглощения

Все окрашенные соединения характеризуются избирательным поглощением света.

Для характеристики окрашенных растворов различных окрашенных соединений пользуются их спектрами поглощения — кривыми светопоглощения, которые определяют зависимость оптической плотности Д или молярного коэффициента поглощения ε от длины волны λ или частоты γ

Д = f(λ) Д = f(γ)

ε = f(λ) ε = f(γ)

Для получения такого спектра (кривой светопоглощения) в таких координатах — проводят серию измерений оптической плотности или молярного коэффициента светопоглощения при различных длинах волн, измерение проводится вначале через 10 – 20 нм, а после границы максимума измеряют через 1 – 2 нм.

Поглощение света измеряют в оптическом диапазоне спектра в ультрафиолетовой (185 – 400 нм), видимой (400 – 760 нм) и инфракрасной (760 – 1000 нм) областях спектра. Кривые светопоглощения снимают с помощью спектрофотометров, рис 3.3.

У окрашенных веществ максимум поглощения света, в большинстве случаев, находится в видимой области спектра (≈ 500 нм), но не может быть смещен в ультрафиолетовую область (K2CrO4), а также может смещаться и в инфракрасную — (CuSO4).

Спектры поглощения позволяют выбрать оптимальную длину волны для аналитических измерений. Максимуму спектра поглощения соответствует максимальное значение молярного коэффициента поглощения — Еmax, т.е. максимальной чувствительности.

Д 3

1,4 max

1,0 — 1