Смекни!
smekni.com

Огнестойкое стекло "Пиран" (стр. 5 из 14)

Предполагают, что активным ингибитором в газовой фазе может быть РО, взаимодействующий с Н+ и НО- с образованием НРО, действительно идентифицированной в некоторых пламенях.

Интересная гипотеза о механизме действия фосфорсодержащих замедлителей горения полиметилметакрилата предлагается авторами работ, установившими, что увеличение концентрации фосфора приводит к незначительному увеличению константы скорости выгорания ПММА и одновременно к заметному возрастанию КИ. Предполагают, что возрастание константы скорости выгорания может быть связано с влиянием фосфорных кислот, образующихся при термическом разложении фосфорсодержащих антипиренов,на процесс деструкции полимера. В свою очередь, разложение фосфорных кислот в газовой фазе приводит к образованию P2O5, на частицах которого, как на стенке, гибнут активные радикалы, ведущие процесс горения. Заметное влияние на процесс горения полимеров может оказывать промотирование образования углеродных частиц фрагментами фосфорсодержащих антипиренов в газовой фазе. Унос этих частиц приводит к охлаждению пламени, поскольку их теплоемкость выше, чем теплоемкость газообразных продуктов деструкции.

Еще один фактор, действие которого может проявиться при горении полимеров, содержащих замедлители горения на основе фосфора, связан с тем, что некоторые из них настолько термостабильны, что способны испаряться без разложения в газовую фазу. На этот процесс, естественно, затрачивается часть энергии обратного теплового потока, воздействующего на полимер. Но основной эффект при применении антипиренов такого типа обусловлен тем, что их тяжелые пары изолируют пламя от кислорода. Предполагают, что так действует трикрезилфосфат в не образующих кокса полимерах: полиэтилене, полиметилметакрилате, полиоксиметилене. Вероятно, этот фактор действия фосфорсодержащих антипиренов может быть особенно существен при их применении для снижения горючести полимеров, не имеющих в своей структуре гидроксильных групп.

Широкое применение нашли антипирены, содержащие в одной молекуле атомы фосфора и галогена. Как правило, эффективность действия таких антипиренов или смесей фосфор- и галогенсодержащих соединений значительно выше, чем фосфор- или галогенсодержащих антипиренов, применяемых в отдельности.

Химическая структура может заметно влиять на эффективность фосфоргалогенсодержащих антипиренов. В этом отношении очень показательны результаты работы, авторы которой исследовали горючесть композиций полиметилметакрилата с трис -, трис -, фенилбис – и фенилбис фосфатами. Оказалось, что фосфаты с хлоризопропильными группами более эффективны, чем с хлорэтильными, несмотря на меньшее содержание фосфора и хлора. Такой, на первый взгляд, парадоксальный результат объясняется особенностями термического разложения фосфатов и различным их влиянием на термическую деструкцию полиметилметакрилата. Фосфаты с хлоризопропильными заместителями начинают разлагаться при более низкой температуре, чем фосфаты с хлорэтильными заместителями, причем первые разлагаются с поглощением, а вторые – с выделением тепла. Кроме того, трис фосфат и композиции полиметилметакрилата с ним образуют при термическом разложении значительно больше коксового остатка, чем трис фосфат. Если учесть, что в газообразных продуктах пиролиза композиций идентифицированы фосфаты и хлорсодержащие продукты их разложения, то можно сделать вывод о том, что суммарный эффект действия хлорированных фосфатов в полиметилметакрилате обусловлен как разбавлением горючих продуктов термической деструкции полимера менее горючими продуктами разложения антипиренов, так и образованием коксового слоя на поверхности горящего полимера. Таким образом, не трудно увидеть, что даже незначительные различия в структуре галогенированных фосфорсодержащих соединений могут быть причиной заметных различий в их эффективности как антипиренов.

В системах замедлителей горения в комбинации с фосфором наряду с галогенами применяется азот. При этом если сочетание фосфор – галоген чаще всего достигается в результате галогенирования фосфорсодержащих соединений, и, таким образом, фосфор и галоген входят в состав одного химического соединения, то сочетание фосфор – азот часто достигается введением в полимеры соединений, содержащих в отдельности фосфор и азот. Из соединений, содержащих оба эти элемента, следует упомянуть в первую очередь амиды фосфорных кислот, фосфазены и полифосфазены, фосфаты и полифосфат аммония.

Среди замедлителей горения, содержащих фосфор и азот в одной молекуле, заметное место занимают соединения, включающие фосфазогруппу – P = N: олигомерные и полимерные фосфазены. Эффективность и, по-видимому, механизм действия соединений этого типа в значительной степени определяется характером заместителей у атома фосфора.

Снижение горючести с помощью азотсодержащих соединений

По масштабам применения азотсодержащие соединения как замедлители горения уступают галоген- и фосфорсодержащим. Тем не менее, они представляют собой самостоятельную группу замедлителей горения, применяемых как в сочетании с галоген-, фосфор – или сурьмусодержащими соединениями, так и индивидуально.

По характеру действия большинство азотсодержащих замедлителей горения напоминают фосфорсодержащие способностью увеличивать коксообразование на поверхности горящих полимеров. Вместе с тем некоторые азотсодержащие замедлители горения действуют в газовой фазе, поскольку при термическом разложении выделяют негорючие газы: азот, СО2, разбавляющие горючие продукты деструкции полимеров. Эта особенность действия азотсодержащих соединений имеет решающее значение при применении в качестве замедлителей горения некоторых аммониевых солей – сульфатов, карбонатов, а также комплексных соединений с внутрисферными аминогруппами NH3.

Из различных классов азотсодержащих соединений, обладающих способностью снижать горючесть полимерных материалов, наибольшее практическое применение нашли амиды, в частности производные мочевины, и гетероциклы, в первую, очередь симм-триазин и его производные. Амиды применяют для снижения горючести полимеров самых разных классов: полипропилена, полиамидов, эпоксидных смол, полиэфиров. Производное симмтриазина – меламин широко применяется как замедлитель горения полиамидного волокна. Еще более эффективны для этих целей аддукты меламина с циануровой и изоциануровой кислотами, Галогенсодержащие производные триазина и гептазина – трибромэтил – и трихлорэтилизоцианурат, бромиды и фториды меламина и мелема, гексабромид триаллилизоцианурата – являются весьма перспективными замедлителями горения пенополиуретанов, поливинилхлорида, термостойких резин на основе этиленпропиленового каучука. Эти замедлители горения, по-видимому, изменяют направление деструктивных процессов, уменьшая долю горючих продуктов деструкции и увеличивая коксовый остаток.

Новые составы и направления в технологии, способах и методах получения органического стекла и триплексов пониженной горючести

Существует промышленная технология получения органических стекол. Однако можно отметить и новые направления в технологии. Многослойное стекло, в котором одна пластина стекла с внутренней стороны покрыта тонкой металлической пленкой и по периметру расположены прокладка и уплотнитель. Недостатком технологии является низкая механическая прочность подобного пакета. Это связано с повышенной адгезией металлической прослойки и плёнки в пакете, так как концентрируются высокие напряжения, которые при ударном воздействии вызывают разрушение стекла. Повышение механической прочности пакетов достигается тем, что пакетированию подвергают стекла, внутренние поверхности которых металлизированы хаотично или упорядоченно, а также тем, что многослойное стекло комплектуют из стекол, внутренние поверхности которых, снабжены включениями метала и его окиси.

Достижение высокой пулестойкости при достижении технологичности изготовления и небольшого времени изготовления многослойных стёкол осуществляется в работе. Сборку многокамерного стеклопакета производят из силикатных стекол, который затем обрабатывают в парах кремнийорганического адгезива. Затем приготавливают жидкие фотоотверждаемые клеевые композиции на основе акрилового мономера и с различным содержанием фотоинициатора для каждой камеры многокамерного стеклопакета. После этого заполняют зазоры каждой камеры многокамерного стеклопакета жидкой фотоотверждаемой клеевой композицией и производят фотоотверждение в течение 20–40 мин с использованием в качестве источника УФ-излучения плоской панели люминесцентных ламп марки ЛУФ‑80, расположенных на расстоянии 100–500 мм до поверхности стеклопакета.

Известно изделие на основе ПК и ПММА, полученное заливочной технологией. Полученное изделие обладает плохими оптическими свойствами и не выдерживают испытания при температуре -40°С. Предложенная композиция может быть использована и для склеивания силикатных стёкол, но необходимо будет введение компонентов повышающих адгезию к силикатному стеклу. Полученные также по известной технологии слоистые изделия с полиуретановой или кремнийорганической прослойкой могут быть профилированными, могут обеспечивать защиту от поражения пулей без образования осколков и иметь хорошие оптические характеристики. Вместе с тем, ПУ и кремнийорганические смолы имеют недостаточную адгезионную прочность к ПММА, в результате чего при эксплуатации изделий в интервале температур от -40°С до +50°С происходит частичное отслаивание склеивающего полимера от поверхности полимерного стекла. Всех этих недостатков нет у безосколочные стекла, полученные заливочной технологией, отдельные слои которых выполнены из синтетической смолы и соединены между собой тонкой мягкой и эластичной плёнкой на основе полиоксиалкилакрилата или сополимера с содержанием последнего более 80%. Стёкла применяют в качестве пуленепробиваемых и нерастрескивающихся стёкол.