Смекни!
smekni.com

Переработка одноразовых шприцов (стр. 6 из 18)

Скорость окислительной деструкции определяется скоростью диффузии кислорода в полимер и скоростью химического взаимодействия полимера с кислородом. Скорость диффузии кислорода в полимер наиболее высока, если полимер находится в растворе или расплаве. Полимеры, набухающие в воде, быстрее подвергаются окислительной деструкции, так как в этом случае также возрастает скорость диффузии кислорода в полимер. Чем выше степень кристалличности полимера, тем ниже скорость диффузии кислорода.

Окислительная деструкция насыщенных полимеров протекает медленнее по сравнению с ненасыщенными и может сопровождаться начальным возникновением перекисей; получающиеся при этом макрорадикалы могут давать полимерные перекиси, разлагаться с одновременным разрывом цепи, стабилизироваться путем рекомбинации диспропорционирования.

Рекомбинация макрорадикалов в твердом полимере протекает очень медленно, если процесс не активируется повышением температуры. Однако рекомбинация макрорадикалов с перекисными концевыми группами происходит с достаточно высокой скоростью, что объясняю: передачей кинетической цепи вдоль макрорадикала.

Склонность полиолефинов к окислению, их реакционная способность в реакциях окисления определяются структурой звеньев и плотностью упаковки макромолекул в полимере.

Полиэтилен при нагревании на воздухе окисляется медленно. Под влиянием света скорость реакции окисления резко увеличивается. Поглощение кислорода вызывает вначале понижение молекулярного веса полимера и температуры его размягчения. При нагревании частично окисленного полиэтилена молекулярный вес начинает увеличиваться в результате соединения макромолекул кислородными мостиками. Процесс старения полиэтилена сопровождается изменением не только химического состава макромолекул, но и их структуры. Скорость окисления полиэтилена несколько выше скорости окисления низкомолекулярных парафинов, что, очевидно, связано с наличием в его макромолекулах небольшого количества карбонильных и винильных звеньев. Световое воздействие приводит к разрушению макромолекул в тех местах, где находятся карбонильные группы.

Чем выше степень разветвленности полиэтилена, тем меньше его стойкость к действию кислорода из-за высокой концентрации

-водородных атомов в макромолекуле. Одновременно с увеличением степени разветвленности возрастает объем аморфной фазы в полиэтилене, где развивается процесс окисления.

Разрушение полипропилена кислородом воздуха проходит с большей скоростью, чем полиэтилена. Только при кратковременном нагревании полипропилена до 250-З00°С в присутствии антиоксидантов можно предотвратить его деструкцию и ухудшение механических свойств. Процесс старения полипропилена под действием тепла и света аналогичен старению полиэтилена: вначале преобладают процессы деструкции, и длина цепей полимера уменьшается, затем начинают развиваться процессы межмолекулярного взаимодействия, приводящие к полной потере эластичности и пластичности.

Частичное окисление часто является целенаправленным процессом модификации свойств полиолефинов. Наличие кислородсодержащих групп в составе полиолефинов повышает адгезионное взаимодействие полимерных пленок с защищаемыми поверхностями и адсорбцию азокрасителей, придает изделиям стойкость к окислительной деструкции под влиянием кислорода воздуха, увеличивает жесткость и деформационную устойчивость. В процессе окисления в полимере возникают группы, облегчающие прививку к нему другого полимера. Окислению целесообразно подвергать поверхностные слои готового изделия, применяя в качестве реагента смесь кислорода с озоном. В процессе направленного (контролируемого) окисления в полиолефинах появляются карбоксильные и гидроперекисные группы. Карбоксильные и гидроперекисные группы могут инициировать привитую сополимеризацию [16].

1.7.2 Термическая деструкция полиолефинов

Изменение структуры полимера под влиянием теплового воздействия удается наблюдать только в инертной среде. Процесс термодеструкции может вызывать деполимеризацию полимера, деградацию его молекул, циклизацию до лестничных или графитоподобных структур. Преобладание какого-либо процесса определяется строением полимера и температурой.

Под влиянием высоких температур в инертных средах или в вакууме полимерные насыщенные углеводороды распадаются на полимерные осколки, размер которых тем меньше, чем выше температура и слабее связь С-С в основной цепи. Наибольшей прочностью характеризуется углерод - углеродная связь в основной цепи макромолекулы полиметилена. В полиэтилене углерод - углеродная связь ослаблена в местах боковых ответвлений и в местах окисления до гидроперекисных групп. В полипропилене, прочность связи С-С ослаблена присутствием в каждом звене метильной группы.

Эти особенности структуры полиолефинов ярко проявляются в процессе термодеструкции. Термодеструкция полиэтилена начинается при 290-300°С. Сначала происходит уменьшение молекулярного веса, и только выше 360°С начинается выделение низкомолекулярных продуктов деструкции. Распад молекул в интервале 290-360°С происходит преимущественно по ослабленным связям С-С основной цепи. В процессе деструкции при температуре до 290°С полиэтилен постепенно обогащается звеньями СН=СН.

Уменьшение молекулярного веса полипропилена становится заметным уже при температуре выше 230°С. Процесс деструкции сопровождается выделением летучих продуктов в результате разрыва макромолекул, прежде всего в местах окисления по связи углерод-

-водород. Деструкция при более высоких температурах вызвана, по-видимому, переносом
- водородного атома от третичного атома углерода к соседнему звену (как в случае полиэтилена в местах разветвлений).

Продукты деструкции постепенно, обогащаются осколками с ненасыщенными концевыми звеньями.

В большинстве случаев деструкция полимера по слабым связям или отрыв лабильных групп с рекомбинацией макрорадикалов опережает процесс деполимеризации. Деградация полимера проходит по радикально-цепному механизму, реже - по ионному механизму. Гемолитический распад макромолекул приводит к образованию двух радикалов.

Стойкость к термодеструкции зависит от прочности связи между атомами в основной цепи. Повышение прочности связи С-С в карбоцепных полимерах достигается подбором замещающих групп [15].

1.7.3 Механическая деструкция

Механическая деструкция полимеров протекает под влиянием механических напряжений, превосходящих энергию химических связей в основных цепях макромолекул. Под действием механических напряжений в полимерах проходят одновременно два процесса: скольжение макромолекул относительно друг друга (вязкое течение) и разрыв ковалентных связей в местах наибольшей концентрации напряжений (механическая деструкция). Преобладание любого из этих процессов в линейных полимерах определяется прочностью химических связей, жесткостью макромолекул и величиной межмолекулярного взаимодействия.

Деструкция при механических воздействиях приводит к разрушению макромолекул на осколки, молекулярный вес которых зависит от природы полимера и условий нагружения.

Механическое напряжение вызывает преимущественно гомолитический разрыв макромолекул с образованием макрорадикалов.

При деструкции в присутствии кислорода образуются перекисные радикалы, которые инициируют развитие окислительных процессов, осложняющих рекомбинацию макрорадикалов и приводящих к понижению молекулярного веса линейного полимера или разрушению на случайные осколки сетчатого. В инертной среде макрорадикалы рекомбинируются. Образование связей происходит направленно (в соответствии с направлением механических сил), что проявляется в анизотропии свойств продуктов деструкции. В результате рекомбинации макрорадикалов может повыситься степень разветвленности макромолекул и увеличиться количество гель-фракции, так как часть линейного полимера превращается в сетчатый полимер. При механической деструкции эластичного сетчатого полимера рекомбинация макрорадикалов приводит к образованию новой полимерной сетки, более устойчивой к внешним воздействиям. Одновременно может происходить и диспропорционирование макрорадикалов, в результате которого понижается средний молекулярный вес полимера и становится уже его молекулярно-весовое распределение [12].

Существующие методы механической переработки предполагают переработку одноразовых шприцев в разобранном виде, то есть цилиндр отдельно, поршень отдельно. Необходимым условием данных методов является тщательная сортировка шприцев, что значительно усложняет процесс. Поэтому цель данной работы заключается в изучении способов совместной переработки различных полимерных материалов, таких как полиэтилен и полипропилен, из которого и состоит шприц.

1.8 Добавки

1.8.1 Стабилизаторы

Свойства полимеров ухудшаются из-за деструкции расплава (при переработке), термодеструкции, долговременного теплового старения (термоокисление) и влияния атмосферных условий (включая фотоокисление). Некоторые из этих процессов ускоряются под действием ничтожных количеств металлов. Физические (солнечная радиация и другие высокоэнергетические излучение, тепло) и агрессивные химические агенты (кислород и его активные формы, вредные примеси в атмосфере, такие как NOx, или SO2), усиленные механическим воздействием, атакуют полимер одновременно или в поочередно идущих процессах.