Смекни!
smekni.com

Технологія і устаткування для переробки бензолу (стр. 3 из 24)

Виробничі показники каталітичного гідроочищення фракції ВТК наступні: На мал. 44 приведена принципова схема среднетем-пературной каталітичного гідроочищення. Вихідною сировиною служить БТКС, подавана насосом високого тиску 14 на випарну установку / — систему каскадів, у яких послідовно відбуваються підвищення температури і випар фракції. Випар фракції виробляється безпосередньо в потік циркуляційного газу при великій швидкості останнього, щоб попередити відкладення полімерів на поверхні апаратури, що гріє.

Після останньої секції каскаду полімери випускаються у виді 12—15%=лого розчину фракції, що невипарувалася, БТКС. Розчин полімерів переганяється для одержання дистиляту, що передається у вихідну фракцію. Побічним продуктом є полімерна смола.

Температура парогазовой суміші після випару 170— 190"З, тиск 4,0—4,5 МПа. Після каскаду парогазовая суміш направляється в теплообмінник 2, де нагрівається циркуляційним газом до 200—230°С и надходить у форкоптактный апарат 3. В останньому в присутності алюмо-кобальтмолибдеттового каталізатора здійснюється гідростабілізація (форконтактная очищення), при якій з форконтактного апарата 3 парогазовая суміш надходить у трубчасту піч 4, що обігрівається коксовим газом, і нагрівається до 340—360°С. З печі парогазовая суміш надходить у реакторний блок 5, що складається з двох реакторів (контактних апаратів), що мають алюмокобальтмо-либденовый каталізатор. У першому відбувається гидрогенолиз (руйнування) основної маси тиофена й у незначному ступені гидрируются ароматичні вуглеводні. Температура підвищується на 15°С. Після першого реактора в систему уводиться свіжий коксовий газ з температурою 200—220°С, що дозволяє та 15—20°С підвищити температуру перед другим реактором. Коксовий газ попередньо очищається від сірководню, оксидів азоту й осушується. Газ також звільняється від бензольних вуглеводнів і легких компонентів головної фракції.

В другому реакторі 5 відбувається руйнування що залишилося тиофена, у незначному ступені гідрування бензольних вуглеводнів, а також гідрування компонентів уведеного коксового газу. Завдяки экзотсрмичности реакції температура піднімається на 15—20ЭС. Підвищення температури в межах 340 —400°С приводить до більш глибокого руйнування тиофека й одночасному росту змісту насичених з'єднань (циклогексану і міти-циклогексану) у результаті розвитку процесів гідрування.

Про зниження активності каталізатора судять по змісту тиофена в рафінаді. При змісті водню в коксовому газі-58—60% зміст його в циркулюючому газі звичайно підтримую: на рівні 48—50%.

У першому реакторі руйнуванню звичайно піддається 97—98% вихідного тиофена, у другому досягається необхідний ступінь очищення.

При змісті тиофена у вихідній сировині 1,0—1,4% після другого реактора воно складає 0,0004—0,0006%, зміст л-гептану зберігається на тім же рівні, що й у сировину, а зміст циклогексану і метидциклогексана зростає.

Після другого реактора парогазовая суміш з температурою 360—370°С надходить у теплообмінник 2, віддає тепло циркулюючому газу і прохолоджується до 240—250ЙС. З цією температурою вона надходить у теплообмінники каскадів випарника 1, де прохолоджується до 120—130°С, віддаючи тепло фракції БТКС.

Після теплообмінників каскаду випару ! парогазовая суміш надходить у холодильник 7, прохолоджується до •25—35°С и надходить у сепаратор високого тиску 8. В останньому при тиску 3,3—8,6 МПа виділяється циркуляційний газ, а конденсат з розчиненими газами через редукційний пристрій 9 надходить у сепаратор 10 низького тиску (0,2—0,3 МПа). Рафінад надходить у підігрівник 6 і стабілізаційну колону 11, у якій виділяється залишкова кількість газів, а також сірководню й аміаку.

Рафінад після стабілізаційної (опарної) колони 11, холодильника 7 попадає в промыватели лугу 12, а потім у сховищі 13, відкіля направляється на ректифікацію. Циркуляційний газ після сепаратора високого тиску 8 за допомогою компресора 15 подається в систему. Енергетичні витрати процесу гідроочищення на 1 т сировини (фракції БТКС) складають: електроенергії 90— 120 квг-ч; пари 1,89—2,52 МДж; води 1,5 м3.

Процес гідроочищення відрізняється великим виходом і порівняно високою якістю продуктів, що дозволяє компенсувати збільшені капітальні витрати і витрати по переділі.

У результаті среднетемпературного процесу досягається повне видалення неграничних з'єднань, глибоке очищення від тиофена, але не досягається очищення бензолу від насичених вуглеводнів. В установці високотемпературної гидроочисткп процес проводять на алюмокобальтмолибденовом каталізаторі під тиском 4 МПа і при температурі вище 550°С, що дає можливість піддати гідрокрекінгу насичені, вуглеводні і цим поліпшити якість бензолу, збільшити його вихід до 98%.

Схема гідроочищення сирого бензолу, розроблена співробітниками УХИНа, Гипрококса і Гипрогазтоппрома, передбачає очищення лише фракції ВТК, що зберігає ресурси смолообразующих для виробництва полімерних смол і дає можливість використовувати сірковуглецеву фракцію для одержання сірковуглецю і циклопентадиена. Тому з першого бензолу раніш всего виділяється сірковуглецева фракція. Отримана фракція ВТК надходить па гідроочищення.

Продукт після очищення під тиском і відмивання від сірководню й аміаку містить значна кількість неароматичних (насичених) вуглеводнів, що утворилися в результаті гідрування неграничних вуглеводнів. Наявність неароматичних домішок, багато хто з який утворять з бензолом і іншими ароматичними вуглеводнями азеотропні суміші, ускладнює ректифікацію рафината.

Для одержання бензольних продуктів, що не містять насичених вуглеводнів, передбачається сполучення каталітичного гідроочищення з екстрактивною ректифікацією.

Ректифікація сирого бензолу

Технологія напівбезупинної ректифікації сирого бензолу

У сучасній практиці переробки сирого бензолу широке поширення одержала напівбезупинна технологічна схема Гипрококса роздільної переробки двох бензолів — першого і другого. За цією схемою передбачається безупинний добір сірковуглецевої (головний) фракції, чистих бензолу і толуолу, періодична ректифікації залишку, другого бензолу і сірковуглецевої фракції. Для здійснення цих задач цех ректифікації має у своєму розпорядженні агрегати безупинної і періодичної дії, що складаються з ректифікаційних колон і конденсациопно-охладительной апаратури, мерников і зборів-піків продуктів процесу. На мал. 45 представлена безупинна схема попередньої ректифікації. Сирий бензол зі сховища 1 подається насосом 2 у напірний бак 3. З напірного бака сирий бензол надходить насамперед у нижню трубчатку дефлегматора 4, де підігрівається за рахунок тепла конденсації пар, а потім — у середню частину бензольної колони 5. Тут глухою парою із сирого бензолу відганяються сірковуглецева і бензольна фракції. Сірковуглецева фракція, що має більш низьку температуру кипіння, проходить у виді пар дефлегматор 4 і потім конденсується в конденсаторі-холодильнику 6. Пари бензольної фракції конденсуються в дефлегматорі 4 і у виді флегми повертаються в бензольну колону на верхню тарілку, Бензольна фракція в рідкому виді відбирається з однієї з верхніх тарілок бензольної колони в комбінований конденсатор-холодильник 7 і мерник 8. Сірковуглецева фракція після конденсатора-холодильника 6 у виді готової фракції направляється в мерник 9. Дефлегматор бензольної колони складається з декількох горизонтальних трубчаток, у нижньої пари з колони додатково прохолоджуються технічною водою. Якщо з якої-небудь причини відбирати сірковуглецеву фракцію неможливо холодильник-конденсатор-холодильник цієї фракції виключають, добір рідкої бензольної фракції з колони припиняють і суміш пар цих двох фракцій направляють у конденсатор-холодильник 7 і мерник 3.Отриманий у бензельной колоні залишок після відгону з сирого бензолу сірковуглецевої і бензольної фракцій по трубопроводу перетікає в середню частину колони 10 цій колоні глухою парою виділяються пари толуольной фракції, що, пройшовши дефлегматор 11, конденсуються у конденсаторі-холодильнику 12 до надходять у мерник 13

Стікаюча з нижньої частини колони 10 суміш ксипольной фракції, важкого бензолу і сольвент-нафты направляється в середню частину колони 14. У цій колоні із суміші, що надійшла, глухою і гострою парою виділяються ксилолытая фракція і важкий бензол.

Ксилольная фракція у виді пар залишає копонну зверху і проходить дефлегматор 15, потім холодильник-конденсатор-холодильник із сепаратором 16 і в рідкому виді надходить у мерник 17.3

Пари важкого бензолу відбираються з однієї з нижніх тарілок колони. Ці пари проходять конденсатор -холодильник із сепаратором 18 і в рідкому виді надходять у мерник 19.

Залишок від ректифікації сирого бензолу — сольвент-нафта -з колони надходить у сховище 20. Сольвент-нафта передається в смолоперсгснный цех, де з її шляхом кристалізації виділяють пафталип.

Таким чином, в описаному агрегаті для попередньої ректифікації сирого бензолу виходять одночасно кілька фракцій і сольвеит-пафта.

Виділення головної фракції з першого сирого бенадла є дуже важтгой технологічною операцією у всіх схемах переробки сирого бензолу, у тому числі й в установках гідроочищення.

Попереднє виділення сірковуглецевої фракції дозволяє відокремити від фракції ВТК, що видаляється не в прогині сернокислотной очищення сірковуглець, значна кількість домішок насиченого характеру, а також основну масу циклопентадиепа, що викликає смолоутворення при сернокислотной очищенню.

Перший сирий бензол після ретельного відстою від води

(зміст води не більш 0,1%) зі сховища насосом, безупинно подається через фільтр на тарілку харчування сірковуглецевої колони. Фільтр установлюється для очищення бензолу від зважених смолистих часток, шгорые можуть відкладатися в тарілках колони і забруднювати їх.