Смекни!
smekni.com

Обеспечение безгидратного режима работы газопромысловых коммуникаций (стр. 7 из 17)

Из кривых образования гидратов смесей СН4 и С2Н6 или СН4 и С3Н8 (Рисунок 3.3, 3.4) следует, что при добавлении этана (С2Н6) и пропана (C3Н8) улучшаются условия образования гидратов смесей СН4, так как гидраты образуются при более низких давлениях и более высоких температурах. Из углеводородных газов, кроме С2Н6 и С3Н8, повышению температуры образования гидратов этих смесей с СН4 способствует изобутан, все остальные газы, включая нормальный бутан и выше, действуют отрицательно. Гидраты CH4 при 0°С устойчивы, если давление равно 2,8 МПа или более. Для других углеводородов парафинового ряда (C2Н6; C3Н8; i-С4Н10) это давление составляет соответственно 0,5; 0,1 и 0,1 МПа (рисунок 3.5). Критическая температура образования гидратов (в°С): для С2Н6 - 14,5; C3Н8 - 5,5; для i-C4Н10 - 1,5.

Рисунок 3.3 - Кривые образования гидратов в зависимости от изменения в их составе количества этана. Содержание этана (в %): 1 - 45,6; 2 - 9,6; 3 - 5, 4 - 2,9; 5 - 2,2; 6 - 1,2

Pиcунок 3.4 - Кривые образования гидратов в зависимости от изменения в их составе количества пропана

Содержание пропана (в %): 1 - 63, 2 - 29; 3 - 12; 4 - 5; 5 - 2,6; 6 - 1,0

Рисунок 3.5 - Кривые образования гидратов в зависимости от изменения в их составе индивидуальных углеводородов.

1 - метан; 2 - этан; 3 - пропан; 4 - изобутан; 5 - ацетилен; 6 - этилен; I - линия образования гидратов; II - кривая упругости паров


ра, МПа

Рисунок 3.6 - Зависимость ра от t при различном содержании H2S.

Содержание H2S (в %) 1 - 1; 2 - 2; 3 - 4; 4 - 6; 5 - 10; 6 - 20; 7 - 40; 8 - 60; 9 - 100

Из углеводородов ряда CnH2n гидраты образуют только этилен (С2Н4) и пропилен (С3Н6). Критическая температура для С2Н4 составляет 17°С. Его гидраты при 0°С устойчивы при давлении 0,5 МПа.

Гидраты природных газов - типичные представители так называемых смешанных гидратов, в которых гидратообразователями являются не отдельные индивидуальные углеводороды, а смесь газов. Состав смешанных гидратов и количество компонентов в них изменяются в зависимости от изменения парциального давления и компонентов.

В присутствии сероводорода температура гидратообразования углеводородных газов значительно повышается. Чем больше сероводорода в газе, тем выше равновесная температура и ниже равновесное давление гидратообразования углеводородного газа. Например, из рисунка 3.6 видим, что при давлении 5 МПа для чистого метана температура образования гидратов составляет 6°С, а при 2 % - ном содержании Н2S она достигает 10°С. Влияние CО2 на образование гидратов углеводородных газов показано на рисунке 3.7.

Природные газы, содержащие азот, имеют более низкую температуру образования гидратов. Например, в природном газе с относительной плотностью 0,6 отсутствует азот, гидраты образуются при температуре 10°С

Рисунок 3.7 - Зависимость Р от t при различном содержании СО2.

Содержание С02 (в %): 1 - 12,5; 2 - 28; 3 - 32; 4 - 60; 5 – 100

Рисунок 3.8 - Зависимость Р от t при образовании гидратов в углеводородных газах. Зоны: 1 - газообразный пропан + вода; II - гидрат + газообразный пропан: III - жидкий пропан + вода; IV - гидрат + жидкий пропан и давлении 3,4 МПа, если же в газе содержится 18 % азота, равновесное давление гидратообразования снижается до 3 МПа.

Для образования гидратов в жидких углеводородах по сравнению с газообразными (кривые 1 и 3 на рисунке 3.8) требуются более высокое давление и более низкие температуры. Кривая 2 характеризует упругость насыщенных паров пропана. Выше нее пропан находится в жидком, а ниже - в газообразном состоянии. Например, при температуре 3,8°С для образования гидрата в газообразном пропане требуется давление 0,46 МПа, в жидком - более 3 МПа.

В отличие от природных газов выделение гидратов в жидких углеводородных газов сопровождается увеличением давления системы (в замкнутом объеме). Кроме того, как и в природных газах, в этом случае выделяется теплота, в результате чего повышается температура системы. Поскольку объем остается постоянным, с увеличением температуры в системе растет и давление.

Разложение гидратов жидких углеводородных газов сопровождается уменьшением объема и, следовательно, понижением давления. Образование гидратов в жидких углеводородах идет несравнимо медленнее, чем в газообразных. Чтобы начался этот процесс, требуется выдержать систему при соответствующих условиях в течение некоторого времени в случае равновесия. Однако при отрицательных температурах после появления мелких кристалликов льда гидраты начинают образовываться значительно быстрее.

3.5 Места образования гидратов

Знать места возможного гидратообразования очень важно для своевременного их предупреждения.

Для правильного определения места образования гидратов необходимо знать состав газа, его плотность, изменения давления и температуры и влажность газа.

Зная влажность и состав подаваемого газа, а также зависимость этих параметров от давления и температуры, можно определить время начала образования гидратов, место и скорость накопления их в газопроводе.

Если точка росы лежит выше равновесной кривой гидратообразования, гидраты образуются в точке пересечения линии изменения температуры в газопроводе с кривой равновесной температуры гидратообразования. Если точка росы лежит ниже равновесной кривой, но выше минимума температурной кривой в газопроводе, гидраты образуются в точке росы. В условиях, когда точка росы лежит ниже равновесной кривой гидратообразования и ниже кривой изменения температуры в газопроводе, гидратообразование невозможно.

При создании условий гидратообразования на данном участке газопровода гидратная пробка быстро нарастает по мере поступления воды и гидратообразователя. При этом пары воды выделяются из газа, что снижает их упругость на определенную величину и ускоряет процесс образования локальной гидратной пробки.

Средняя объемная скорость накопления гидратов за время t может быть определена по формуле:

G = Q (Wн-Wк) u/t, (3.1)

где Q - расход газа в тыс. м3; Wн - влагосодержание газа в равновесной точке гидратообразования в г/м3, Wк - влагосодержание газа после образования гидратов в г/м3; u - удельный объем гидратов в м3/кг; t - время образования гидратов в ч.

В газопроводе могут образовываться одна или несколько гидратных пробок.

В результате образования гидратов в газопроводе влагосодержание газового потока над гидратами снижается соответственно снижению упругости паров воды, находящихся в равновесия с жидкой фазой и твердым гидратом. Если в результате образования первой гидратной пробки точка росы паров воды снижается ниже минимума кривой изменения температуры газа в газопроводе, то следующая гидратная пробка может и не образоваться. Если в результате образования гидратной пробки за счет разности упругостей паров воды над жидкой водой и над гидратами точка росы не снижается ниже минимальной температуры в газопроводе, то образуется следующая гидратная пробка - в точке пересечения линии влагосодержания с кривой изменения температуры в газопроводе.

Гидраты образуются в следующих местах:

1. На штуцерах непосредственно после редуцирования газа при давлении примерно 6,5 МПа и температуре ниже 17°С.

2. В обвязке, до сепараторов (при интенсивной теплоотдаче от газового потока к грунту).

3. В сепараторах (скорость потока на входных патрубках циклонных сепараторов достигает 120 м/с; давление в сепараторах значительно превышает равновесное давление гидратообразования). Часть гидратов потоком направляется в отстойную емкость. Здесь они уплотняются и частично или полностью закупоривают емкость, что приводит к резкому снижению эффективности работы сепараторов.

4. На диафрагме замерного участка. В застойных зонах до и после диафрагмы скапливаются ранее образующиеся и переносимые потоком газа гидраты. Гидратное кольцо равномерной толщины с незначительными углами скосов обнаруживали при вскрытии камер замерного участка (рисунок 3.10).

5. В шлейфах - газопроводах, подключающих скважины к промысловому газосборному коллектору. Скопление гидратов наблюдается в непосредственной близости от диафрагмы замерного участка - в местах ответвлений (врезанные свечи, шлейфы). Гидраты в шлейфах образуются также на обратных клапанах, в местах установки задвижек, кранов и карманов для измерения температуры.

6. В промысловом газосборном коллекторе в местах резкого изменения скорости газового потока. Скопление их наблюдается в местах врезок шлейфов скважин в газосборный коллектор, на запорной арматуре, на врезках дрипов и т.д. Гидраты могут также скапливаться и на прямолинейных участках газопроводов. В зависимости от скорости потока гидраты отлагаются в газопроводе в виде спирального кольца или в виде сегмента (рисунок 3.11). Гидраты скопляются также и в объемных сепараторах.

7. На концевых линейных кранах. С одной стороны их действует рабочее давление газосборной сети, с другой - атмосферное. Под таким давлением уплотнительная смазка на пробках кранов и байпасов выдавливается, образуются пропуски газа с резким понижением температуры последнего. Корпус крана или байпас резко охлаждается и образуется застойная зона пониженной температуры. Пары воды, насыщающие газ, конденсируются, и начинается процесс кристаллизации гидратов. Постепенное накопление их приводит к полной закупорке сечения крана или обводного байпаса.