Смекни!
smekni.com

Проект предприятия по производству жестяной тары (стр. 12 из 16)

Средним реечным транспортером склепанный корпус переносится на конец рога. Ролики смазывают продольный шов флоксом, корпус подхватывается цепным транспортером и протаскивается над паяльным валом. Вал, вращаясь наносит на продольный шов корпуса тонкий слой расплавленного припоя; излишек припоя снимается вращающимся матерчатым диском и сбрасывается в специальный ящик. После этого корпус перемещается цепным транспортером над воздухопроводом, где шов охлаждается.

Корпус снимается с рога выбрасывателем, установленным на валике звездочки цепного транспортера, и подается на выносной транспортер, направляющий его в приемную часть фрикционного подъемника.

Техническая характеристика

Производительность в шт/мин 200- 250
Диаметр корпуса в мм 52 - 100
Высота корпуса в мм 56 - 126
Толщина жести в мм 0,21 - 0,28
Мощность электродвигателя, Квт 4,8
Габаритные размеры в мм: 8250*2000*1500
Масса в кг 4800

Паяльный автомат.

Паяльный автомат последовательно выполняет следующие технологические операции: смазку продольного шва паяльной жидкостью, прогрев и пайку шва, очистку шва от налипшего припоя и охлаждение шва.

Паяльный вал установлен в подшипниках, укрепленных на чугунной ванне, и приводится во вращение звездочкой, которая цепной передачей через коробку скоростей связана с распределительным валом. Паяльная ванна снабжена камерой, в которой расплавляют твердый припой. Ванна обогревается электронагревательными элементами, установленными в ее днище. Припой загружают в ванну до уровня оси паяльного вала, температура припоя регулируется автоматическим терморегулятором.

Продолжительность нагрева припоя в ванне 120-140 мин. Температура расплавленного припоя не должна превышать 320° С для банок из белой жести нелакированных и 300° С для лакированных. Регулируют паяльный вал совместно с ванной по отношению к рогу ручными маховичками.

Для нормальной пайки корпусов большое значение имеет частота вращения паяльного вала. Оптимальная частота вращения на один корпус за время его прохода по валу составляет 4-8 об.

Вследствие капиллярных свойств продольного шва при пайке в него втягивается жидкий припой, облуживающий крючки шва со всех сторон. Для очистки пропаянного шва снаружи и снятия с него излишков припоя имеется матерчатый диск, который приводится во вращение от распределительного вала.

После снятия излишков припоя корпус транспортируется вдоль щели, через которую от вентилятора поступает охлаждающий воздух. Длина щелевого воздухопровода около 3 м, что обеспечивает достаточное охлаждение корпусов.

Техническая характеристика

Размеры паяльного шва (диаметр х длина) в мм 100 х 1500
Потребляемая мощность нагревательных элементов паяльной ванны в кВт 17,0
Мощность электродвигателя в кВт:
паяльного автомата 2,8
вентилятора охлаждения 1,7

Автомат для контроля герметичности банки.

Автомат для испытания герметичности жестяных цилиндрических банок (называемый также тестер) является контрольной многопатронной машиной, которая отбраковывает негерметичные банки и одновременно сигнализирует о дефектах в работе жестяно-баночной линии.

Банки испытываются на герметичность, как правило, при помощи сжатого воздуха, подаваемого непосредственно в банку или испытательный патрон, в котором находится банка.

Из ресивера сжатый воздух через конусный золотник одновременно поступает в испытываемую банку и контрольный сосуд. Так как наполнение воздухом происходит одновременно, а банка и сосуд сообщаются между собой, то независимо от колебаний давления воздуха в сети в испытываемой банке и контрольном сосуде устанавливается одинаковое давление.

По окончании периода испытания, составляющего время оборота ротора автомата на ~300°, банка и контрольный сосуд через золотник сообщаются с мембранным датчиком. При негерметичности банки давление воздуха со стороны контрольного сосуда будет больше и через рычаг 5 замкнется контакт датчика. При помощи электронного усилителя полученный импульс передается на сортировочное устройство Для получения высокой чувствительности тестера необходимо, чтобы все трубки от банки и контрольного сосуда были одинаковой емкости и сопротивление протеканию воздуха в них было бы также одинаковым.

Производительность автомата составляет в зависимости от размерив банок до 200 шт/мин. В автомате можно испытывать банки диаметром от 50 до 115 мм и высотой от 40 до 140 мм. Рабочее давление автомата 0,1 Мн/м* (1 кГ/см2). Колебание давления в пределах ±0,01 Мн/м2 (±0,1 кГ/см2) не влияет на чувствительность. Последняя равна потере 25 см3 воздуха из банки за 1 мин.

5. Автоматизация технологического процесса

5.1 Параметры контроля и регулирования

Сведения о контролируемых параметрах сведены в таблицу 5.1.

Таблица 5.1. - Контролируемые параметры

Наименование параметра Обозначение Номинальное значение Пределы измерения Требования к точности измерения
Температура воз-духа в камере нагрева Тв 400 ºС 350-500 ºС
5 ºС
Скорость воз-духа в камере нагрева Sв 25м/с 20 - 30м/с
1м/с

Регулируемые параметры сушильной камеры:

температура воздуха в камере нагрева - Тв;

Управляющие параметры:

включение и выключение основного и вспомогательного ТЭНов.

Возмущающие параметры:

загрузка печи;

температура и влажность воздуха на входе в камеру;

Принципиальная электрическая схема состоит из трех блоков; измерительный блок И-С-62, регулятора типа РП-2-СЗ и системы импульсного фазного устройства (СИФУ).

Измерительное устройство представляет собой мост переменного тока, одним из плеч которого является термопара ТП. Заданное значение температуры может устанавливаться за датчиком R2 или корректором R7. Питание моста осуществляется от вторичной обмотки трансформатора TV2. Изменение температуры вызывает изменение ЭДС термопары. На диагонали моста появляется переменное напряжение. Напряжение питания изменяется резистором R8. С помощью этого резистора устанавливается чувствительность измерительного блока. Появившееся напряжение сигнала ошибки поступает через входной трансформатор ТV1 на транзисторный усилитель, затем сигнал поступает на выходные и соответственно на входные клемы электрического регулятора, демпфируется с помощью цепочки R14-С3. Постоянная времени этой цепочки может изменятся с помощью сопротивления R14. Сумма сигналов через защитное сопротивление R16 поступает на модулятор образованный диодами VD5, VD6 и резисторами R17, R 18, R19. С помощью резистора R18 мост балансируется при отсутствии сигнала на входе. Мост питается от генератора переменного напряжения частотой 500 кГц, собранного в модуле питания. С этого же модуля через конденсатор С5 подается напряжение прямоугольной формы частоты 50Гц, формируемое с помощью опорного диода VD10. Ёмкость р-n-перехода диодов VD5 и VD6 зависит от величины и направления приложенного к диодам напряжения. Поэтому напряжение 50 Гц разбалансирует мост и напряжение 500 кГц, подаваемое на другую диагональ, проходит через разбалансированный мост. При этом амплитуды сигнала 500 кГц одинаковы в оба полупериода сигнала УТЗ изменяется направление тока в управляющих обмотках. Таким образом, модуль усилителя в целом имеет на входе и выходе сигналы постоянного напряжения. Наличие модулятора и демодулятора приводит к существенному уменьшению дрейфа усилителя.

Управляющая обмотка магнитного усилителя расположена в модуле триггера. Модуль триггера состоит из магнитного усилителя, охваченного положительной обратной связью с тиристором на входе. Два магнитных усилителя собраны на четырех пермаллоевых сердечниках каждый. Обмотки 1-1 и 2-2 служат для питания магнитного усилителя. Они же являются выходными (рабочими) обмотками усилителя. При появлении импульсов определенной полярности на обмотке 3-4 индуктивное сопротивление одной из включенных навстречу обмоток 1-1 и 2-2 изменяется между средними точками 2’-1’ обмоток появляется разность напряжений. Под действием этой разности открывается один из тиристоров VS1 или VS2. При этом выпрямленное напряжение от обмотки 1-2-3 трансформатора ТV7 подается на один из зажимов Б или М. при появлении напряжения на выходных зажимах блока загорается одна из лампочек НЛ1 или НЛ2. Разность напряжений подается на сигнальную обмотку магнитного усилителя МУ3. Магнитные усилители МУ1 и МУ2 охвачены положительной обратной связью, которая выполнена на обмотках 5-6. При появлении напряжения между точками 1’-2’ через обмотку 5-6 протекает ток, что приводит к еще большему отпиранию тиристора. Обмотки 7-8 служат для введения в блок зоны нечувствительности, изменяемой с помощью резистора R25. Па эти обмотки подается выпрямленное напряжение от обмотки 3-4 трансформатора VT6. Появление напряжения между зажимами МО и БО приводит к срабатыванию СИФУ.

СИФУ благодаря положительной обратной связи формирует прямоугольный импульс, для этого в цепь коллектора включается первичная обмотка ТУ9, ТУЮ, вторичная обмотка подключена на вход между базой и эмитером УТ4 и УТ5. При открытии транзисторов и нарастании тока в цепи коллектора ЭДС вторичной обмотки смещает транзисторы в сторону еще большего открытия, когда транзисторы входят в состояние насыщения, нарастание тока коллектора прекращается и ЭДС исчезнет, транзисторы также резко закроются, как и открылись.