Смекни!
smekni.com

Понятие (стр. 4 из 6)

Например, множе­ство студентов P и множество спортсменов Qмогут быть мысленно преобразованы в класс, состоящий только из студентов, которые являются спортсменами. На рисунке 9 штриховкой показано множество, образованное посредст­вом данной операции. Эти же два множества можно под­вергнуть иной операции, получив класс спортсменов, ни один из которых не является студентом (рис. 10). Понятия, предшествующие операции, будем называть исходными, вновь полученное понятие назовем результатом соответст­вующей операции. В нашем примере исходными понятиями будут понятия «студент» и «спортсмен», результат же опе­рации в первом случае, вероятно, лучше всего выразить словосочетанием «студент - спортсмен», во втором - кон­струкцией «спортсмен, не являющийся студентом». Пораз­мыслив, можно прийти к выводу, что существуют и другие способы преобразования тех же исходных понятий, приво­дящие к различным результатам.

В различных эпизодах интеллектуально-речевой практи­ки (в различных текстах) встречаются понятия, словесная форма выражения которых позволяет рассматривать их как сложные, возникшие в результате преобразования других понятий. В таких случаях может возникнуть вопрос об исход­ных (иногда очевидных, иногда лишь предполагаемых) поня­тиях и характере произведенной с ними операции. Раскры­вая логические механизмы образования таких понятий, мы получаем возможность составить достаточно ясное представление об их содержании и объеме или, если необходимо, уточнить это представление. Рассмотренное выше понятие, выраженное словосочетанием «студент - спортсмен», недву­смысленно фиксирует область пересечения исходных клас­сов. Таковы же, например, понятия «солдат - герой России» или «журналист - международник». Первое выражает об­ласть пересечения класса солдат и множества героев России, второе - область пересечения понятий «журналист» и «спе­циалист по международным вопросам». Однако идеальная по ясности картина встречается далеко не всегда. Не столь просто охарактеризовать со стороны содержания и объема такие понятия, как, скажем, «научно-практическая конфе­ренция», «научно-техническая информация», «логико-психологический анализ», хотя они вроде бы построены по той же словообразовательной модели. Соединение некоторых исходных понятий в более сложную конструкцию не всегда осуществляется с должной степенью определённости, а иногда ведет к образованию достаточно серьёзных ошибок. Изучение логических операций с поня­тиями позволяет обнаружить внутренние, иногда скрытые механизмы подобных ошибок, способствует выработке дей­ственных навыков контроля над смысловыми свойствами текста. Объектами логических операций могут быть одно, два или неопределённо большое число понятий. Примерами ло­гических операций с одним понятием служат рассмотренные ранее операции обобщения и ограничения. Нужно отметить, однако, что есть ситуации, допускающие различные вариан­ты анализа. В понятии «симфония Д. Д. Шостаковича» оди­наково правомерно усматривать результат любой из следую­щих операций: 1) ограничение понятия «симфония», 2) ог­раничение понятия «музыкальное произведение Д. Д. Шос­таковича», 3) объединение указанных в пунктах 1 и 2 понятий способом, который позволяет зафиксировать в новом поня­тии область их пересечения.

Отрицание понятия.

Из операций с одним исходным понятием по степени значимости наибольшего внимания заслуживает операция, именуемая отрицанием. В результате отрицания произвольного понятия Pобразуется новое понятие не-P. Объем этого нового понятия включает в себя лишь те объек­ты х, о каждом из которых можно высказать истинное суж­дение х есть не-Р. Скажем, в результате отрицания понятия «журналист» получаем множество «не-журналистов», путем отрицания понятия «учебник» переходим к понятию «не-­учебник» и т. п. Чтобы отличить собственно логическое отрицание от не­которых грамматических форм, частица «не» отделяется от исходного понятия дефисом. Этим подчерки­вается, что в результате логического отрицания образуется понятие, связанное с исходным отношением контрадикторности, а не контрарности.

Смысл отрицания произвольного понятия Р хорошо передается графической схемой (рис.11), где прямоугольни­ком обозначен универсальный класс, а результат операции пока­зан штриховкой. Эта же схема де­лает наглядной закономерную за­висимость, выражаемую форму­лой не не-P=P. Формула показы­вает объемное равенство некото­рого понятия с результатом его двойного отрицания (так назы­ваемый закон двойного отрица­ния для классов). И действительно, исходному пункту;

поэтому двойное отрицание иног­да называется мнимым (дважды отрицая данное понятие, мы, по существу, его не отрицаем).

Сложение и умножение понятий.

Из операций с двумя исходными понятиями (или боль­шим их числом) следует выделить логическое сложение и логическое умножение. Результат сложения понятий Р и Qбудем называть их логической суммойи обозначать P+Q, а результат умножения тех же понятий назовем их логическим произведениеми обозначим Р•Q.Вобъём понятия Р+Qвходят те объекты, каждый из которых принадлежит хотя бы одному из исходных классов. Иными словами, х принадлежит классу Р+Q, если истинно суждение х есть Р или Q (где союз «или» употребляется в неисключающем его значении). В объём понятия PQ входят те объекты, каждый из которых принадлежит обоим исходным классам. Иначе говоря, х при­надлежит классу Р•Qесли истинно суждение х есть P и Q, где союз «и» фиксирует одновременное вхождение х в дан­ные классы.

Различие между этими операциями иллюстрируют гра­фические схемы. На рисунках 12 - 15 показана логическая сумма, а на рисунках 16 - 19 - логическое произведение понятий Р и Qс учетом четырех известных нам видов отношений. Лишь для равнообъемных понятий итоги сложения и умножения со­впадают, в трех других случаях классы Р+Qи Р•Q принци­пиально различны.


Это и понятно, поскольку операция сло­жения, в сущности, объединяет исходные множества, тогда как операция умножения образует класс, соответствующий области их пересечения. Уместно подчеркнуть, что результат умножения родового и видового понятий объёмно равен видовому, а результат сложения тех же понятий - родовому (см. рис.17 и 13). Если исходные понятия внеположенные, то их сложение образует класс, полностью включающий оба множества (см. рис.15); логическое произведение тех же понятий ведет к образованию нулевого класса (см. рис.19).