Смекни!
smekni.com

Расчет параметров системы наблюдений в методе ОГТ (стр. 3 из 7)

Для прослеживания и определения элементов пространственного залегания крутопадающих границ , а также трассирования тектонических нарушений целесообразно применить сопряженные профили . которые почти параллельны , а расстояние между ними выбирают из расчета обеспечения непрерывной корреляции волн , они составляют 100-1000 м.

При наблюдении на одном профиле ПВ располагают на другом , и наоборот. Такая система наблюдений обеспечивает непрерывную корреляцию волн по сопряженным профилям.

Многократное профилирование по нескольким (от 3 до 9) сопряженным профилям составляет основу способа широкого профиля. Пункт наблюдения при этом располагают на центральном профиле , а возбуждения производят последовательно с пунктов , находящихся на параллельных сопряженных профилях. Кратность прослеживания отражающих границ по каждому из параллельных профилей может быть различной. Общая кратность наблюдений определяется произведением кратности по каждому из сопряженных профилей на их общее число. Увеличение затрат на проведение наблюдений по столь сложным системам оправдывается возможностью получения информации о пространственных особенностях отражающих границ.

Площадные системы наблюдений , построенные на основе крестовой расстановки , обеспечивают площадную выборку трасс по ОГТ за счет последовательного перекрытия крестообразных расстановок, источников и приемников, Если шаг источников δy и сейсмоприемников δx одинаков , а сигналы , возбуждаемые в каждом источнике , принимаются всеми сейсмоприемниками , то в результате такой обработки формируется поле из 576 средних точек. Если последовательно смещать расстановку сейсмоприемников и пересекающую ее линию возбуждения вдоль оси x на шаг δx и повторить регистрацию , то в результате будет достигнуто 12-кратное перекрытие , ширина которой равна половине базы возбуждения и приема вдоль оси y на шаг δy достигается дополнительное 12-кратное перекрытие , а общее перекрытие составит 144.

На практике применяют более экономичные и технологичные системы , например 16-кратную. Для ее реализации используют 240 каналов записи и 32 пункта возбуждения, Показанное на рис.6 фиксированное распределение источников и приемников называют блоком, После приема колебаний от всех 32 источников блок смещают на шаг δx , вновь повторяют прием от всех 32 источников и т.д. Таким образом , отрабатывают всю полосу вдоль оси x от начала идо конца площади исследований. Следующую полосу из пяти линий приема размещают параллельно предыдущей таким образом , чтобы расстояние между соседними (ближайшими) линиями приема первой и второй полос равнялось расстоянию между линиями приема в блоке. В этом случае линии источников первой и второй полос перекрываются на половину базы возбуждения и т.д. Таким образом , в данном варианте системы линии приема не дублируются , а в каждой точке источника сигналы возбуждаются дважды.

Сети профилирования.

Для каждой разведочной площади существует предел числа наблюдений , ниже которого невозможно построение структурных карт и схем , а также верхний предел , выше которого точность построений не увеличивается. На выбор рациональной сети наблюдений влияют следующие факторы : форма границ , диапазон изменения глубин залегания , погрешности измерения в точках наблюдения , сечения сейсморазведочных карт и другие. Точные математические зависимости пока не найдены в связи с чем пользуются приближенными выражениями.

Различают три стадии сейсморазведочных работ : региональную , поисковую и детальную. На стадии региональных работ профили стремятся направлять в крест простирания структур через 10-20 км. От этого правила отступают при проведении связующих профилей и увязке со скважинами.

При поисковых работах расстояние между соседними профилями не должно превышать половины предполагаемой длины большой оси исследуемой структуры , обычно оно составляет не более 4 км. При детальных исследованиях густота сети профилей в разных частях структуры различна и не превышает обычно 4 км. При детальных исследованиях густота сети профилей в разных частях профилей различна и не превышает обычно 2 км. Сеть профилей сгущают в наиболее интересных местах структуры (свод , линии нарушения , зоны выклинивания и т.д.). Максимальное расстояние между связующими профилями не превышает удвоенного расстояния между разведочными профилями. При наличии разрывных нарушений на площади исследования в каждом из крупных блоков усложняют сеть профилей для создания замкнутых полигонов. Если размеры блоков небольшие , то проводят только связующие профили, Соляные купола разведывают по радиальной сети профилей с их пересечением над сводом купола , связующие профили проходят по периферии купола., связующие профили проходят по периферии купола.

При проведении сейсмических на площади , где ранее выполнялись сейсмические исследования, сеть новых профилей должна частично повторять старые профили для сопоставления качества старого и нового материалов, При наличии на изучаемой площади скважин глубокого бурения они должны быть увязаны в общей сети сейсмических наблюдений , и пункты взрыва и приема должны располагаться вблизи скважин.

Профили должны быть по возможности прямолинейными с учетом минимальных сельскохозяйственных потрав. При работах по МОГТ на угол излома профиля должны быть изложены ограничения , поскольку угол наклона и направление падения границ могут быть оценены до начала полевых работ лишь приблизительно , а учет и корреляция этих величин в процессе суммирования представляют значительные трудности . Если принимать во внимание только искажение кинематики волн , то допустимый угол излома можно оценить по соотношению

α=2arcsin(vср∆t0/xmaxtgf) ,

где ∆t=2∆H/vср – приращение времени по нормали к границе ; xmax – максимальная длина годографа ; f – угол падения границы. Зависимость величины α как функции обобщенного аргумента vсрt0/tgf для различных xmax (от 0,5 до 5 км) показана на (рис.4) , который можно использовать как палетку для оценки допустимых значений угла излома профиля при конкретных предположениях о строении среды. Задавшись допустимой величиной расфазирования слагаемых импульсов ( например , ¼ периода T) , можно рассчитать значение аргумента для максимально возможного угла падения границы и минимально возможной средней скорости распространения волн. Ордината прямой с xmax при этом значении аргумента укажет величину максимально допустимого угла излома профиля.

Для установления точного расположения профилей еще во время проектирования работ проводят первую рекогносцировку. Детальную рекогносцировку осуществляют в период полевых работ.

3.2 условия возбуждения упругих волн.

При проведении сейсморазведочных работ наиболее широко используется возбуждение упругих волн с помощью взрывов зарядов твердых взрывчатых веществ (ВВ). Заряды взрываются специальными сейсмическими электрическими детонаторами (ЭДС). Они устроены так , что электрическая цепь мостика накаливания разрывается не за счет посылки в него тока и перегорания нити накаливания , а за счет взрыва заряда взрывчатого вещества. Момент разрыва электрической цепи в детонаторе передается по проводам или по радио на сейсмическую станцию , регистрируется на ней и принимается за момент возбуждения упругой волны. Отметка момента взрыва осуществляется и считывается с записи с погрешностью 0,001с.

Наиболее широкое распространение при проведении работ методом отраженных волн на суше получил способ возбуждения упругих волн с помощью взрыва заряда ВВ , погруженного в специально пробуренную взрывную скважину. Глубина погружения зарядов в скважину изменяется от первых десятков до 100 метров и больше. Глубина погружения заряда зависит от характера строения верхней части разреза. Экспериментально установлено , что заряд желательно помещать ниже подошвы ЗМС и уровня грунтовых вод в слои , сложенные влажными пластичными глинами. Чем меньше мощность ЗМС и чем ближе к земной поверхности залегают грунтовые воды , тем меньше глубина погружения заряда.

Когда мощность ЗМС большаяи грунтовые воды залегают глубоко , взрывные сква­жины приходится бурить на глубину в несколько десятков , а иногда и глубже 100 м. Наиболее глубокие скважины прихо­дится бурить при производстве работ в межгорных и предгор­ных впадинах, в пределах которых бывают часто развиты сухие песчано-галечниковые отложения с большой глубиной залега­ния грунтовых вод.

Для повышения доли энергии взрыва , идущей на образо­вание упругой волны, ствол взрывной скважины после погру­жения в него заряда ВВ заливают водой или глинистым рас­твором , осуществляя тем самым водную его закупорку. При размещении заряда в оптимальных условиях после взрыва не образуется мощной поверхностной волны и создаются более благоприятные условия для выделения и прослеживания отра­женных волн на земной поверхности. После выброса газооб­разными продуктами взрыва столба жидкости у устья взрыв­ной скважины возникает не особенно интенсивная звуковая волна. Но одновременно создается фон помех после падения на земную поверхность выброшенной из скважины жидкости и мелких раздробленных взрывом кусков горной породы.

Частотный состав колебаний , возбуждаемых при взрыве , зависит от литологического состава и физического состояния пород в очаге взрыва. Преобладающая частота возбуждаемых в очаге колебаний зависит от массы заряда ВВ , убывая с его увеличением обратно пропорционально кубическому корню из массы заряда. Но при наблюдениях вдали от источника эта зависимость почти незаметна.

Амплитуда регистрируемых колебаний также связана с мас­сой заряда. При малых зарядах эта зависимость проявляется резче , а при больших - слабее. При больших зарядах увеличе­ние их массы становится малоэффективным. В этих случаях для повышения интенсивности записи используют группиро­вание взрывов. При групповом взрыве нескольких мелких зарядов удается получить более интенсивную запись упругих волн , чем при взрыве одиночного заряда с такой же массой. Но для этого нужно обеспечить строго одновременный подрыв группы зарядов.