Смекни!
smekni.com

Статистика (стр. 1 из 10)

Основные характеристики и графическое изображение

вариационного ряда.

Понятие вариационного ряда.

Первичные статистические данные часто представлены неупорядоченной последовательностью чисел, характеризующих ту или иную сторону процесса. В этой совокупности чисел бывает трудно разобраться и первичная обработка материалов сводится к приведению имеющихся данных к виду, удобному для анализа.

Пример: При исследовании студентов первого курса по возрасту были зафиксированы следующие данные:

17 18 18 18 19 18 20 20 19 18 18 21 19 22 23 18 19 19 19 21 21 18 18 18 18 22 19 18 20 18 19 18 20 19 21 20 22 18 19 21 19 19 22 23 19 20 21 22 17 19

Полученный в результате обследования ряд чисел в дальнейшем будем называть статистической совокупностью, а сами числа показывающие изменения (вариацию) подлежащего изучению признака – вариантами (обозначим их Xi, где I - номер варианта).

Если упорядочить совокупность исходных данных в убывающем или возрастающем порядку то получим так называемый ранжированный ряд.

Используем для упорядоченной таким образом совокупности более компактную запись, представляем ее в виде таблицы. В первой колонке поставим различающиеся по величине варианты, расположив их в возрастающем порядке, во второй – числа, показывающие, как часто, встречаются отдельные значения вариант (назовем их частотами и обозначим Ni).


Распределение студентов первого курса по возраст

табл. 1

Возраст студентов (варианты Xi) Число студентов с данным возрастом (частоты Ni)
17181920212223 215146652
ИТОГО 50

Полученный ряд называется вариационным. Сведение первичных данных в вариационный ряд облегчит анализ совокупности так, например, видно, что в обследованной группе чаще встречаются студенты в возрасте 18-19 лет, меньше всего студентов 17 лет и 23.

Основные характеристики вариационного ряда.

Построение вариационного ряда является только первым шагом в изучении статистических данных. Для более глубокого исследования материала необходимы обобщающие количественные показатели, вскрывающие общие свойства статистической совокупности. Эти показатели, во-первых, дают общую картину, показывают тенденцию развития процесса или явления, нивелируя случайные индивидуальные отклонения, во-вторых, позволяют сравнивать вариационные ряды и, наконец, используются во всех разделах статистики при более полном и сложном анализе статистической совокупности.

Существуют две группы характеристик вариационного ряда:

1. меры уровня, или средние;

2. меры рассеяния.

Меры уровня, или средние.

Наиболее употребительными в статистических исследованиях являются три вида средних: средняя арифметическая, мода и медиана.

Выбор типа средней для характеристики вариационного ряда зависит от цели, для которой исчисляется средняя, от особенностей исходного материала и от возможностей той или иной средней.

Прежде чем перейти к характеристике отдельных видов средней, сформулируем некоторые, самые общие требования к средней.

Средняя, представляет собой количественную характеристику качественно однородной совокупности. Нарушение этого требования приводит к неверным выводам, искажает суть явления.

Кроме того, необходимо, чтобы средняя не была слишком абстрактной, а имела ясный смысл в решении задачи.

Далее, желательно, чтобы процедура вычисления средней была проста. При прочих равных условиях предпочтение отдается той средней, которая проще вычисляется.

При выборе средней желательно свести к минимуму влияние случайных колебаний выборки. Так, если одной и той же совокупности взять несколько групп элементов, то средние, им соответствующие, будут, как правило, различаться по величине. Рекомендуется использовать вид средней, у которой эти различия минимальны.

Наиболее распространенной мерой уровня – является средняя арифметическая.

где

- знак суммирования от 1 до k; Xiварианты с порядковым номером i;
= n – объем совокупности (число элементов совокупности); ni – частота варианта xi; k – число варианта. Если вместо частоты заданы частости qi, то формула имеет вид

где

= 1, или 100%.

Пример:

Вычислим средние размеры наделов крестьян по данным табл. 1.

Для решения задачи, прежде всего, необходимо найти середины интервалов. Определенная трудность возникает в связи с тем, что первый и последний интервалы являются открытыми. Нижнюю границу первого интервала естественно принять равной нулю. Тогда середина этого интервала равна (0+2)/2=l. Для нахождения центрального значения последнего интервала применим предложенный выше прием. Величина интервала, предшествующего последнему, равна 2. Условно принимаем за величину последнего интервала 2. Тогда верхняя граница того интервала-9 и, следовательно, его середина вычисляется так: (7+9)/2=8.

Пользуясь формулой средней арифметической и принимая за значение признака середину интервала (строка 2 табл.2), рассчитываем средний дореформенный надел у барщинных крестьян:

Аналогично вычисляется средний дореформенный надел у оброчных крестьян:

.

Табл.2

Размеры дореформенного надела у крестьян

надел xi, дес
до 2 С 2 до 3 С 3 до 5 С 5 до 7 Свыше 7
середина интерваловпроценет барщинных крестьян qt(1)процент оброчных крестьянqt(2) 1.01.812.4 2.518.417.5 4.063.548.2 6.015.213.3 8.01.18.6

Кроме средней арифметической широкое распространение имеет другой вид мер уровня - медиана.

Медианой (обозначим Mе) называется такое значение варьирующего признака, которое приходится на середину вариационного ряда.

При нахождении медианы дискретного вариационного ряда могут возникнуть два случая: 1) число вариант нечетно (k=2m+1), 2) число вариант четно (k=2m). В первом случае Me=xm+1, т. е. медиана равна центральной (срединной) варианте ряда, во втором случае Me,=(xm+xm+1)/2, т.е. медиана принимается равной полу сумме находящихся в середине ряда вариант.

Пусть дан ряд с нечетным числом вариант:

X1 X2 X3 X4 X5 X6 X7 X8 X9
8 9 11 12 15 16 18 19 19

Тогда число вариант, равное 9, представимо в виде 2m+1=9, откуда 2m=8, m=4, т.е.Me=x4+1=x5=15.

Рассмотрим случай четного числа членов:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
8 9 11 12 15 16 18 19 19 23 24 40

Здесь 2m = 12, m = 6 и

Для интервального вариационного ряда медиана вычисляется по формуле

где xMe(min)-нижняя граница медианного интервала; h - величина этого интервала, или интервальная разность; qi- частоты или частости;

- накопленная сверху частота (или частость) интервала, предшествующего медианному; частота или частость медианного интервала.

Пример: Вычислим медиану по данным табл. 3.

Распределение хозяйств русских переселенцев Чимкентского уезда по размеру посева (1902г.)

Размер посева xi дес. Всего хозяйства qi % Накопленные частости Ui Плотность распределения fi
0-44-88-1212-2020-30Более 30 16,624,419,123,99,76,3 16,641,060,184,093,7100,0 4,156,104,782,990,97

Вычисление медианы начинается с нахождения интервала, содержащего медиану. Медианному интервалу соответствует первая из накопленных частот или частостей, превышающая половину всего объема совокупности. В нашем случае объем совокупности равен 100%, первая из накопленных частостей, превышающая половину всего объема совокупности, - 60,1 (см. табл. 6). Следовательно, интервал 8-12 будет медианным. Далее, xme(min)=8, h=4,

=41, qMe=19.1. Воспользуемся формулой:

Таким образом, серединный размер посева равен примерно 9,9 дес.

Медиану можно использовать в тех случаях, когда изучаемая совокупность неоднородна, и в такой ситуации она будет иметь вполне конкретный смысл. Так, в рассмотренном примере значение медианы имеет следующий смысл: у одной половины хозяйств размер посева меньше, у другой половины - больше, чем 9,9 дес.

Особо важное значение медиана приобретает при анализе асимметричных рядов, т. е. рядов, у которых нагружены (имеют большие частоты) крайние или близкие к крайним значения вариант. Например, медиана даст более верное представление о среднем уровне личных доходов группы семей в капиталистических странах, чем средняя арифметическая, так как медиана не столь чувствительна к край ним (нетипичным в плане постановки задачи) значениям (семьи с большим доходом), как средняя арифметическая.