Смекни!
smekni.com

Математическая модель в пространстве состояний линейного стационарного объекта управления (стр. 6 из 14)

Рис.28. Графики фазовых координат.


Рис.29. График управления.

Сравним, как стабилизируется система управления с постоянными и переменными коэффициентами регулятора обратной связи на начальном этапе:

Рис.30. Графики фазовых координат.

Выводы: из графиков видно, что система, у которой коэффициенты регулятора меняются со временем, стабилизируется не хуже, чем, система, у которой коэффициенты регулятора не изменяются.

5.3 Задача АКОР – стабилизации для компенсации
известного возмущающего воздействия

Рассмотрим систему вида

,

где

возмущающее воздействие.

Матрицы

заданы в пункте 5.1.1.

Весовые матрицы

и
имеют следующий вид:

,
.

Начальные условия для заданной системы

.

Время стабилизации

.

Задаем возмущающее воздействие только на первую координату, так как только она имеет значение

и
.

Решение задачи стабилизации сводится к решению уравнения Риккати

с начальными условиями:

Введём вспомогательную вектор-функцию

, ДУ которой имеет вид:

с начальными условиями:

.

Управление определяется по формуле:

.

Используя скрипт AKOR_stabilizaciya_pri_vozmusheniyah.m, получили следующие результаты:


Рис.31. Графики решения уравнения Риккати.

Рис.32. Графики коэффициентов регулятора обратной и прямой связи.


Рис.33. График возмущающего воздействия.

Рис.34. График вспомогательной вектор – функции.

Рис.35. Графики фазовых координат.

Рис.36. График управления.

Рис.37. График возмущающего воздействия.

Рис.38. График вспомогательной вектор – функции.

Рис.39. Графики фазовых координат.

Рис.40. График управления.

Выводы: По графикам фазовых координат при различных воздействиях видно, что влияние возмущающего воздействия не существенно и фазовые координаты устанавливаются в ноль. При этом видно, что графики первой фазовой координаты при различных воздействиях мало отличаются друг от друга, т.е. система отрабатывает любое возмущение.

5.4 Задача АКОР для отслеживания известного задающего воздействия. I подход

Система задана в виде:

Матрицы

заданы в пункте 5.1.1.

Весовые матрицы

и
имеют следующий вид:

,
.

Начальные условия для заданной системы

.

Время слежения

.

Задающее воздействие в виде системы ДУ

Начальные условия для воздействия:

.

Введем расширенный вектор состояния и расширенные матрицы

,

,

.

Тогда новое описание системы имеет вид:

с начальными условиями:

.

Решением уравнения Риккати будет матрица:

с н.у.

Тогда оптимальное управление, находится по формуле:

Используя скрипт AKOR_slegenie_na_konech_interval_I_podxod, получили следующие результаты:

Рис.41. Графики решения уравнения Риккати.

Рис.42. Графики коэффициентов регулятора обратной и прямой связи.

Рис.43. Графики фазовых координат.

Рис.44. График управления.

Выводы: На данном этапе была решена задача АКОР-слежения. В качестве отслеживаемого воздействия была взята исходная система, но с другими начальными условиями, поэтому графики фазовых координат отличаются от заданных, но только на начальном участке движения.

5.5 Задача АКОР для отслеживания известного задающего воздействия. II подход (линейный сервомеханизм)

Система задана в виде:

Матрицы

заданы в пункте 5.1.1.

Весовые матрицы

и
имеют следующий вид: