Смекни!
smekni.com

Шпоры по математическому анализу (стр. 2 из 8)


Допустим, что f''(х0)>0. Это означает, что f'(х) возрастает при переходе значений х < х0 к значениям х > х0 . Но f'(х0)=0, поэтому возрастание f'(х0)<0, при х < х0и f'(х0)>0,при х > х0 . (для значений х из достаточно малой окрестности х0 ). В соответствии с п.1 получается минимум в точке х0 . Аналогичное рассуждение при f''(х0)<0 приводит к существованию максимума в точке х0 . Вывод: если f'(х0)=0, а f''(х0)<0, то функция y=f(x)имеет локальный максимум в точке х0 . Если f'(х0)=0, а f''(х0)>0, то функцияy=f(x)имеет локальный минимум в точке х0.

11. Формула Тейлора и Маклорена.


Этой формулой можно воспользоваться, когда в некоторой окрестности точки х0 существует непрерывная производная f(n+1)(x), и значения х принадлежат этой окрестности. Через Rn обозначен так называемый остаточный член. Его можно записывать в разных формах. Мы ограничимся формулой Лагранжа:

Здесь с - какое-то число, о котором известно только то, что оно находится между х0 и х.

При х0=0 формулу Тейлора называют формулой Маклорена, общий вид которой:


8. Нахождение наибольшего и наименьшего значений функции на отрезке.

Рассмотрим функцию у=f(х), непрерывную на отрезке [a,b]. По теореме Вейерштрасса эта функция принимает наибольшее и наименьшее значения на отрезке. Наибольшее и наименьшее значения могут достигаться либо в точках локального экстремума (x2, x3, x4, x5,), либо на концах промежутка. Находим точки, подозрительные на экстремум 1, x2, x3, x4, x5,). Вычисляем значения функции в этих точках и на концах промежутка [a,b]. Из полученных чисел выбираем самое большое и самое маленькое. Это не предусматривает применения достаточных условий экстремума в точке х1, где локального экстремума не существует, т.е. проделана лишняя работа. Однако, как правило, экономнее вычислять значения функции во всех точках, подозрительных на экстремум, вместо того, что бы отбирать из них с помощью достаточных условий лишь те точки, в которых локальный экстремум действительно есть. Иногда описанную задачу называю глобальный экстремум.

9. Нахождение асимптот графиков функции.

Говорят, что точка движется по кривой в бесконечность, если расстояние этой точки до начала координат неограниченно возрастает.

Определение: Прямая называется асимптотой кривой, если расстояние от точки, движущейся по кривой в бесконечность, до этой прямой стремится к нулю.

Нахождение вертикальных ас:

Ищутся конечные значения х=а, при которых


Существование такого значения часто связано с обращением в нуль знаменателя дроби.

Нахождение наклонных асимптот.

Пусть y = kx+b - асимптота кривой y=f(x) при x→+∞ (как на рисунке). Угол φсохраняет постоянное значение, α=φ. Из KLMKM=MLּcos α. Поэтому KM и ML стремятся к нулю одновременно. ML=f(x)-(kx+b), следовательно (1):


Преобразуем это равенство, вынеся х за скобки:


При x→∞ такое равенство возможно только тогда, когда:



Здесь

Поэтому


Следовательно (получаем (2)),


Вычислив k, находим b. Из равенства (1)(получаем (3)


Существование пределов (2) и (3) не только необходимо, но и достаточно, чтобы прямая y=kx+b была асимтотой кривой y=f(x). В частности, при k=0 асимптота будет горизонтальной. Кривая не имеет наклонной асимптоты, если не существует хотя бы один из пределов (2) и (3).

13. Первообразная. Теорема о двух первообразных одной функции.

Определение: Функция F(x) называется первообразной для функции f(x) на интервале (a,b), если на этом интервале существует производная F'(x)и F'(x)=f(x).

Теорема: Если F1(x)иF2(x) - первообразные для одной и той же функции f(x), то их разность есть величина постоянная.

Докозательство: По условию F'1(x)=F'2(x)=f(x)обозначим:Ф(x)= F1(x) - F2(x). Очевидно, Ф'(x) равняется нулю во всем промежутке (a,b), где определены первообразные F1(x)иF2(x). Для любых х1, x2,Î (a,b) по формуле Лагранжа Ф(х1)-Ф(х2)'(c)(b-a). ноФ'(c)=0, т.к. сÎ(a,b), следовательно Ф(х1)=Ф(х2). Это означает, что Ф(х) сохраняет постоянное значение на промежутке (a,b), т.е. F1(x) - F2(x)=С.

Следствие: Если для функции f(x) первообразной на интервале (a,b) является функция F(x), то ее любая другая первообразная для f(x) имеет вид F(x)+C, где С - произвольная постоянная.

14. Неопределенный интеграл. Табличные интегралы.

Определение: Неопределенным интегралом от функции f(x) называется совокупность всех первообразных этой функции. Он изображается так: f(x)dx, где ∫- знак интеграла, f(x)dx - подынтегральное выражение,f(x) - подынтегральная функция.

Из определения вытекает, что


И следовательно d(∫f(x)dx)=f(x)dx. С другой стороны, F'(x)dx=∫dF(x)=F(x)+C.

Если F(x) - какая-нибудь первообразная для f(x), то учитывая приведенное выше следствие, можно написать: ∫ f(x) dx = F(x)+C, где С- произвольная постоянная. Путем дифференцирования обеих частей равенства легко доказать справедливость следующих свойств:

1. ∫ Аf(x)dx = A ∫ f(x)dx(постоянный множитель можно выносить за знак интеграла).

2. [f(x)-f(x)]dx=∫f(x)dx+∫f(x)dx (интеграл от суммы функций равен сумме интегралов от этих функций).

10. Схема исследования функции с помощью дифференциального исчисления и построения графика.

Исследование функции y=f(x) проводится по плану:

1. Находится ООФ.

2. Вычисляются нули функции y=f(x), т.е. значения х1, x2, при которых f(x1)=0, f(x2)=0…Между нулями функция, как правило сохраняет знак, так, непрерывная функция не может сменить знак не обратившись в ноль. Устанавливают где f(x)>0 и f(x)<0.

3. вычисляются производная f'(x)и находятся ее нули и знак в промежутках между нулями. В том промежутке, где f'(x)>0, функция возрастает, где f'(x)<0 - убывают. Попутно выявляются локальные экстремумы функции.

4. Вычисляется вторая производная f''(x) и с ее помощью находятся промежутки выпуклости (f''(x)<0), вогнутости (f''(x)>0) и точка перегиба (f''(x)=0).

5. Определяются вертикальные, горизонтальные и наклонные асимптоты.

Рекомендуется вычислять значения самой функции в тех точках, где f'(x) и f''(x) обращаются в нуль и наносить соответствующие точки на график. Затем нанесеные точки плавно соединяется прямой с учетом всех результатов исследования. Если функция обладает свойством четности или нечетности, то можно использовать это обстоятельство при исследовании (или после исследования для частичной проверки правильности построения графика).

21. Теорема о среднем значении для определенного интеграла.

Если функция y=f(x) непрерывна на отрезке [a,b], то найдется такая точка ξÎ(a,b), что справедливо равенство:


Теорема верна и при b<a.

Доказательство: Проведем его для случая a<b. Пусть m и M - наименьшее и наибольшее значение функции f(x) на отрезке [a,b] (для непревной функции они существуют по теореме Вейерштраса). По следствию из теоремы (Если на отрезке [a,b] функция f(x) интегрируема и удовлетворяет неравенству m£f(x)£M. То выполняются неравенства: (на этом следствие из теоремы закончилось, но к нему относится ниже написанное неравенство))


можно записать

Поделив это неравенство на полжительное число b-a, получим:


Непрерывная функция f(x) принимает всякое значение промежуточное между наименьшим m и наибольшим M значениями. Поэтому существует такое число x(a<x<b), что