Смекни!
smekni.com

Ортогональные полиномы и кривые распределения вероятностей (стр. 6 из 7)

И соответственно условие ортогональности будет иметь вид:

если

Многочлены Чебышева I рода являются частным случаем многочленов Якоби, так как весовая функция, относительно которой ортогональны эти многочлены, имеет вид:

и получается при подстановке в весовую функцию многочленов Якоби параметров

.

Многочлены Чебышева II рода так же являются частным случаем многочленов Якоби, так как весовая функция многочленов Чебышева II рода имеет вид

и получается при подстановке в весовую функцию многочленов Якоби параметров

.

Следует так же отметить, что многочлены Лежандра являются частным случаем многочленов Якоби, так как весовая функция многочленов Лежандра

и есть частный случай весовой функции многочленов Якоби при

.

Глава 3. Примеры нахождения кривых распределения вероятностей и программное обеспечение.

В этой главе рассматриваются примеры нахождения кривых распределения по методу кривых Пирсона с использованием теоретических исследований, рассмотренных в первой и второй главах дипломной работы. Было написано программное обеспечение, с помощью которого были получены и проинтерпретированы численные результаты.

§ 1. Примеры нахождения кривых распределения вероятностей.

Рассмотрение примеров заключалось в том, что было рассмотрено пятьдесят случайных выборок, а далее были рассмотрены примеры выборок с заданным законом распределения. Согласно рассмотренному ниже алгоритму были произведены соответствующие вычисления, и по каждой выборке была построена кривая распределения вероятностей. При проведении испытаний было получено, что кривая распределения сорока семи из пятидесяти рассмотренных выборок есть кривая Пирсона первого типа, которая определяется следующей формулой:

.

Здесь нужно отметить разнообразие кривых Пирсона, делающее их применение очень гибким. Это означает, что кривые распределения вероятностей первого типа при различных значениях параметров

и
могут иметь различную форму.

Ниже рассмотрено несколько примеров наиболее часто встретившихся форм кривой распределения I типа.

Пример 1.

Рассмотрим выборку:

1 10,55233622 2 Кривая распределения вероятностей первого типа.
2 13,44763172 2
3 17,80800986 1
4 4,963081479 2 Параметры кривой:
5 14,66424847 2
6 12,436602 1
10,0143
7 9,36697793 2
7,6909
8 15,20854056 1
0,9984
9 15,66078138 2
0,5348
10 8,748272777 2
0,0759
11 9,028156996 1
12 18,93642914 2
13 18,84283829 1
14 14,6049341 1

Следовательно, кривая распределения вероятностей будет определена на промежутке

и будет иметь вид:

1

0

Рис.1

Из чего следует, что если параметры кривой распределения первого типа будут находиться в пределах

, то мы будем получать форму кривой распределения, изображенную на рис.1.

Из пятидесяти рассмотренных выборок двадцать четыре имеют такую форму кривой распределения вероятностей.

Пример 2.

Рассмотрим другую выборку:

1 8,460199654 2 Кривая распределения вероятностей первого типа.
2 45,34087276 8
3 18,07745451 5
4 5,419406056 8 Параметры кривой:
5 18,67596108 6
6 23,24656701 9
17,4066
7 18,95143622 1
37,6794
8 53,27426755 3
-0,3882
9 54,93095666 1
0,3243
10 24,27284002 2
0,0187
11 17,74883789 4

Кривая распределения вероятностей имеет в этом случае форму, показанную на рис. 2.

1

0

Рис.2

В этом случае параметры кривой распределения будут:

. И если параметры кривой распределения другой выборки будут удовлетворять этим неравенствам, то форма кривой распределения этой выборки будет похожа на рис. 2.

Этот случай встретился нам семь раз из пятидесяти.

Пример 3

1 3,881268442 7 Кривая распределения вероятностей первого типа.
2 1,343869925 17
3 3,770335495 11
4 2,860628724 9 Параметры кривой:
5 2,043179214 4
6 1,447737217 10
1,2163
7 2,43993476 13
1,4994
8 1,658227324 8
-0,7286
9 3,98119396 16
-0,6654
10 1,391261339 5
0,1632

Кривая распределения вероятностей имеет вид:

1

0

Рис. 3

Такой будет форма кривой распределения вероятностей, если параметры

. Эта форма кривой встречается шестнадцать раз из пятидесяти.